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Preface to the Second Edition

It’s high time that there was a second edition of Winning Ways.

Largely as a result of the first edition, and of John Conway’s On Numbers and Games,
which we are glad to say is also reappearing, the subject of combinatorial games has burgeoned
into a vast area, bringing together artificial intelligence experts, combinatorists, and computer
scientists, as well as practitioners and theoreticians of particular games such as Go, Chess,
Amazons and Konane: games much more interesting to play than the simple examples that
we needed to introduce our theory.

Just as the subject of combinatorics was slow to be accepted by many “serious” mathemati-
cians, so, even more slowly, is that of combinatorial games. But now it has achieved consid-
erable maturity and is giving rise to an extensive literature, documented by Aviezri Fraenkel
and exemplified by the book Mathematical Go: Chilling Gets the Last Point by Berlekamp
and Wolfe. Games are fun to play and it’s more fun the better you are at playing them.

The subject has become too big for us to do it justice even in the four-volume work that we
now offer. So we've contented ourselves with a minimum of necessary changes to the original
text (we are proud that our first formulations have so well withstood the test of time), with
additions to the Extras at the ends of the chapters, and with the insertion of many references
to guide the more serious student to further reading. And we’ve corrected some of the one
hundred and sixty-three mistakes.

We are delighted that Alice and Klaus Peters have agreed to publish this second edition.
Their great experience, and their competent and cooperative staff, notably Sarah Gillis and
Kathryn Maier, have been invaluable assets during its production. And of course we are
indebted to the rapidly growing band of people interested in the subject. If we mention one
name we should mention a hundred; browse through the Index and the References at the end of
each chapter. As a start, try Games of No Chance, the book of the workshop that we organized
a few years ago, and look out for its successor, More Games of No Chance, documenting the
workshop that took place earlier this year.

Elwyn Berlekamp, University of California, Berkeley
John Conway, Princeton University

Richard Guy, The University of Calgary, Canada

November 3, 2000
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Preface

Does a book need a Preface? What more, after fifteen years of toil, do three talented authors
have to add. We can reassure the bookstore browser, “Yes, this is just the book you want!”
We can direct you, if you want to know quickly what’s in the book, to the last pages of this
preliminary material. This in turn directs you to Volume 1, Volume 2, Volume 3 and Volume 4.

We can supply the reviewer, faced with the task of ploughing through nearly a thousand
information-packed pages, with some pithy criticisms by indicating the horns of the polylemma
the book finds itself on. It is not an encyclopedia. It is encyclopedic, but there are still
too many games missing for it to claim to be complete. It is not a book on recreational
mathematics because there's too much serious mathematics in it. On the other hand, for us, as
for our predecessors Rouse Ball, Dudeney, Martin Gardner, Kraitchik, Sam Loyd, Lucas, Tom
O’Beirne and Fred. Schuh, mathematics itself is a recreation. It is not an undergraduate text,
since the exercises are not set out in an orderly fashion, with the easy ones at the beginning.
They are there though, and with the hundred and sixty-three mistakes we've left in, provide
plenty of opportunity for reader participation. So don’t just stand back and admire it, work
of art though it is. It is not a graduate text, since it's too expensive and contains far more
than any graduate student can be expected to learn. But it does carry you to the frontiers of
research in combinatorial game theory and the many unsolved problems will stimulate further
discoveries.

We thank Patrick Browne for our title. This exercised us for quite a time. One morning,
while walking to the university, John and Richard came up with “Whose game?” but realized
they couldn’t spell it (there are three tooze in English) so it became a one-line joke on line
one of the text. There isn't room to explain all the jokes, not even the fifty-nine private ones
(each of our birthdays appears more than once in the book).

Omar started as a joke, but soon materialized as Kimberley King. Louise Guy also helped
with proof-reading, but her greater contribution was the hospitality which enabled the three
of us to work together on several occasions. Louise also did technical typing after many drafts
had been made by Karen McDermid and Betty Teare.

Our thanks for many contributions to content may be measured by the number of names
in the index. To do real justice would take too much space. Here's an abridged list of helpers:
Richard Austin, Clive Bach, John Beasley, Aviezri Fraenkel, David Fremlin, Solomon Golomb,
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h Preface xvii

Steve Grantham, Mike Guy, Dean Hickerson, Hendrik Lenstra, Richard Nowakowski, Anne
Scott, David Seal, John Selfridge, Cedric Smith and Steve Tschantz.

No small part of the reason for the assured success of the book is owed to the well-informed
and sympathetic guidance of Len Cegielka and the willingness of the staff of Academic Press
and of Page Bros. to adapt to the idiosynerasies of the authors, who grasped every opportunity
to modify grammar, strain semantics, pervert punctuation, alter orthography, tamper with
traditional typography and commit outrageous puns and inside jokes.

Thanks also to the Isaak Walton Killam Foundation for Richard’'s Resident Fellowship
at The University of Calgary during the compilation of a critical draft, and to the National
(Science & Engineering) Research Council of Canada for a grant which enabled Elwyn and
John to visit him more frequently than our widely scattered habitats would normally allow.

And thank you, Simon!

University of California, Berkeley, CA 94720 Elwyn Berlekamp
University of Cambridge, England, CB2 15B John H. Conway
University of Calgary, Canada, T2N 1N4 Richard Guy

November 1951
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Spade-Work!

Let spades be trumps! she said, and trumps they were.

Alexander Pope, The Rape of the Lock, c.aii, L46.

CECILY: When I see a spade I call it a spade.
GWENDOLEN: I am glad to say I have never seen a spade.
Oscar Wilde, The Importance of Being Earnest, I

Our first few chapters do the spade-work for the rest by telling how to add games together
and how to work out their values.

Chapters 1 and 2 introduce these ideas and show that some simple examples have ordinary
numbers for values while others don't.

In Chapter 3 you'll see how the special values called nimbers, that arise in the game of
Nim, suffice for all impartial games, and lots of examples are tackled in Chapter 4.

Chapter 5 has some very small games, and some others which, because they are both big
(unlike nimbers) and hot (unlike numbers), really need the theory of Chapter 6.

Finally, Chapter 7 discusses the small games to within an atom or two, and Chapter 8
show how such values arise along with ordinary numbers in the game of Hackenbush.

Xix
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Whose Game?

‘Begin at the beginning,” the King said, gravely, ‘and go on till you come to the end, then stop.’
Lewis Carroll, Alice in Wonderland, ch. 12

It is hard if I cannot start some game on these lone heaths.

William Hazlitt, On Going a Journey

Who's game for an easy pencil-and-paper (or chalk-and-blackboard) game?

Figure 1. A Blue-Red Hackenbush Picture.




2 Whose Game? [ Y

Blue-Red Hackenbush

Blue-Red Hackenbush is played with a picture such as that of Fig. 1. We shall call the two
players Left and Right. Left moves by deleting any bLue edge, together with any edges that
are no longer connected to the ground (which is the dotted line in the figure), and Right moves
by deleting a Red edge in a similar way. (Play it on a blackboard if you can, because it's easier
to rub the edges out.) Quite soon, one of the players will find he can’t move because there are
no edges of his color in what remains of the picture, and whoever is first trapped in this way
is the loser. You must make sure that doesn’t happen to you!

Well, what can you do about it? Perhaps it would be a good idea to sit back and watch a
game first, to make sure you quite understand the rules of the game before playing with the
professionals, so let's watch the effect of a few simple moves. Left might move first and rub
out the girl's left foot. This would leave the rest of her left leg dangling rather lamely, but no
other edges would actually disappear because every edge of the girl is still connected to the
ground through her right leg. But Right at his next move could remove the girl completely, if
he so wished, by rubbing out her right foot. Or Left could instead have used his first move to
remove the girl’'s upper arm, when the rest of her arm and the apple would also disappear. So
now you really understand the rules, and want to start winning. We think Fig. 1 might be a
bit hard for you just yet, so let’s look at Fig. 2, in which the blue and red edges are separated
into parts that can’t interact. Plainly the girl belongs to Left, in some sense, and the hoy
to Right, and the two players will alternately delete edges of their two people. Since the girl
has more edges, Left can survive longer than Right, and can therefore win no matter who
starts. In fact, since the girl has 14 edges to the boy’s 11, Left ends with at least 14 — 11 = 3
spare moves, if he chops from the top downwards, and Right can hold him down to this in a
similar way.

Figure 2. Boy meets Girl.

Tweedledum and Tweedledee in Fig. 3 have the same number of edges each, so that Left is
19 — 19 = 0 moves ahead. What does this mean? If Left starts, and both players play sensibly
from the top downwards, the moves will alternate Left, Right, Left, Right, until each player
has made 19 moves, and it will be Left’s turn to move when no edge remains. So if Left starts,
Left will lose, and similarly if Right starts, Right will lose. So in this zero position, whoever
starts loses.




h The Tweedledum and Tweedledee Argument 3

Figure 3. Tweedledum and Tweedledee, about to have a Battle.

The Tweedledum and Tweedledee Argument

In Fig. 4, we have swapped a few edges about so that Tweedledum and Tweedledee both
have some edges of each color. But since we turn the new Dum into the new Dee exactly
by interchanging blue with red, neither player seems to have any advantage. Is Fig. 4 still a
zero position in the same sense that whoever starts loses? Yes, for the player second to move
can copy any of his opponent’s moves by simply chopping the corresponding edge from the
other twin. If he does this throughout the game, he is sure to win, because he can never he
without an available move. We shall often find games for which an argument like this gives a
good strategy for one of the two players—we shall call it the Tweedledum and Tweedledee
Argument (or Strategy) from now on.

Figure 4. After their first Battle: Ready for the Next?




4 Whose Game? [ Y

The main difficulty in playing Blue-Red Hackenbush is that your opponent might contrive
to steal some of your moves by cutting out of the picture a large number of edges of your
color. But there are several cases when even though the picture may look very complicated,
you can be sure that he will be unable to do this. Figure 5 shows a simple example. In this
little dog, each player’s edges are connected to the ground via other edges of his own color.
So if he chops these in a suitable order, each player can be sure of making one move for each
edge of his own color, and plainly he can’t hope for more. The value of Fig. 5 is therefore once
again determined by counting edges—it is 9 — 7 = 2 moves for Left. In pictures like this, the
correct chopping order is to take first those edges whose path to the ground via your own color
has most edges—this makes sure you don't isolate any of your edges by chopping away any of
their supporters. Thus in Fig. 5 Left would be extremely foolish to put the blue edges of the
neck and head at risk by removing the dog’s front leg; for then Right could arrange that after
only 2 moves the 5 blue edges here would have vanished.

vé
X X

Figure 5. A Dog with Leftward Leanings.

How Can You Have Half a Move?

But these easy arguments won’t suffice for all Hackenbush positions. Perhaps the simplest
case of failure is the two-edge “picture” of Fig. 6(a). Here if Left starts, he takes the bottom
edge and wins instantly, but if Right starts, necessarily taking the top edge, Left can still
remove the bottom edge and win. So Left can win no matter who starts, and this certainly
sounds like a positive advantage for Left. Is it as much as a 1-move advantage? We can try
counterbalancing it by putting an extra red edge (which counts as a 1-move advantage for
Right) on the ground, getting Fig. 6(b). Who wins now?

_____ it 18 1

(c) (d)
Figure 6. What do we mean by Half a Move?
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If Right starts, he should take the higher of his two red edges, since this is clearly in danger.
Then when Left removes his only blue edge, Right can still move and win. If Left starts, his
only possible move still leaves Right a free edge, and so Right still wins. So this time, it
is Right that wins, whoever starts, and Left’s positive advantage of Fig. 6(a) has now been
overwhelmed by adding the free move for Right. We can say that Left’s advantage in Fig. 6(a),
although positive, was strictly less than an advantage of one free move. Will it perhaps be
one-half of a move?

We test this in Fig. 6(c), made up of twe copies of Fig. 6(a) with just one free move for
Right added, since if we are correct % + % for Left will exactly balance 1 for Right. Who wins
Fig. 6(c)? Left has essentially only one kind of move, leading to a picture like Fig. 6(b), which
we know Right wins. On the other hand, if Right starts sensibly by taking either of his two
threatened edges, Left will move to a picture like Fig. 6(d) and win after Right’s next move.
If Right has used up his free move at the outset, Left’s reply would take us to Fig. 6(a), which
we know he wins.

We've just shown that Right wins if Left starts and Left wins if Right starts, so that
Fig. 6(c) is a zero game. This seems to show that two copies of Fig. 6(a) behave just like one
free move for Left, in that together they exactly counterbalance a free move for Right. So it’s
really quite sensible to regard Fig. 6(a) as being a half-move’s advantage for Left.

Putting Right's red edge partly under Left’s control made Fig. 6(a) worse for him than
Fig. 6(d). So perhaps Fig. 7(a) should be worth less to Right than Fig. 7(b) in which Right’s
edge is threatened by only one of Left’s?

l% moves 1% moves 1% moves A zero game

for Left? for Left for Right

_____ 1 1} 1

(a) (b) (] (d)

Figure 7. Is Right’s Edge even more under Left’s Control?

We are asking whether Fig. 7(a) is worth exactly 13 moves to Left like Fig. 7(b). We can
test this by adding 1% free moves for Right to Fig. 7(a). Since Fig. 7(c) is the opposite of
Fig. 7(b), we produce the required allowance by adjoining it to Fig. 7(a), giving Fig. 7(d).

Who wins this complicated little pattern? Here each player has just one risky edge partly
in control of his opponent, and if a player starts by taking his risky edge, his opponent can
remove the other, leaving two unfettered moves each. If instead he takes the edge just below
his opponent’s risky edge, the opponent can do likewise, now leaving just one free move each.
The only other starting move for Left is stupid since it leaves only red edges touching the
ground and indeed Right can win with a move to spare.

What about Right’s remaining move? Since this is to remove the isolated red edge, it must
be stupid, for surely it would be better to take the middle red edge and so demolish a blue




6 Whose Game? [ Y

edge at the same time? And indeed Left’s reply of chopping the middle edge of the chain of
three proves perfectly adequate. So every first move loses, and once again the game is what
we called a zero game. This seems to show that contrary to our first guess, Figs. 7(a) and 7(b)
confer exactly the same advantage to Left, namely one and a half free moves.

... And Quarter Moves?

In Fig. 8(a), Right’s topmost edge is partly under Left’s control, but also partly under Right’s
as well, so it should perhaps be worth more to him than his middle one? Since we found that
the middle edge was worth half a move to Right, the pair of red edges collectively would then
be worth at least a whole move to him, counteracting Left’s single edge. So maybe Right has
the advantage here?

(a) (b) (c) (d)

Figure 8. Are Right’s Edges worth more than Left’s?

This naive opinion is dispelled as soon as play starts, for Left’s only move wins the game
as soon as he makes it, showing that Fig. 8(a) gives a positive advantage to Left. But when we
adjoin half a move for Right as in Fig. 8(b), Right can win by playing first, by removing the
topmost edge, or playing second, by removing the highest red edge remaining. So Fig. 8(a),
though a positive advantage for Left, is worth even less to him than half a move. Is it perhaps,
being three edges high, worth just one-third of a move? No! We leave the reader to show
that two copies of Fig. 8(a) exactly balance half a move for Right, by showing that the second
player to move wins Fig. 8(c), so that Fig. 8(a) is in fact a quarter move’s advantage for Left.

And how much is Fig. 8(d) worth?

L -

Figure 9. A Hackenbush Position worth 9%.

Figure 9 shows a Hackenbush position of value 9%, since the tree has value 9, and the rest
value % What are the moves here? Right has a unique red edge, and so a unique move, to a

position of value 9+ 1 = 10, but Left can move either at the top of the tree, leaving 8%, or by
1

removing the 3 completely, which is a better move, since it leaves value 9. Since Left’s best




Y ... And Quarter Moves? 7
move is to value 9, and Right’s to 10, we express this by writing
{9/10} =93 (“9 slash 10 equals 93”)

In a similar way, we have the more general equation

fnln+1} =n+ 1,

of which the simplest case is

{0]1} = 3,
with which we began. We also have the simpler equation
al } =n+1
for each n =0, 1, 2, ..., for if Left has just n + 1 free moves, he can move so as to leave just

n free moves, while Right cannot move at all. The very simplest equation of this type is
{I1}=0

which expresses the fact that if neither player has a legal move the game has zero value.

Figure 10. A Game of Ski-Jumps.
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Ski-Jumps for Beginners

Figure 10 shows a ski-slope with some skiers in the pay of Left and Right, about to participate
in our next game. In a single move, Left may move any skier a square or more Eastwards,
or Right any one of his, Westwards, provided there is no other active skier in the way. Such
a move may take the skier off the slope; in this case he takes no further part in the game.
No two skiers may occupy the same square of the slope. Alternatively a skier on the square
immediately above one containing a skier of the opposing team, may jump over him onto the
square immediately below, provided this is empty. A man jumped over is so humiliated that
he will never jump over anyone else—in fact he is demoted from being a jumper to an ordinary
skier, or slipper!

No other kind of move is permitted in this game, so that when all the skiers belonging to
one of the players have left the ski-slope, that player cannot move, and a player who cannot
move when it is his turn to do so, loses the game. Let's examine some simple positions. Figure
11{a) shows a case when Left’s only jumper is already east of Right’s, so that no jump is
possible. Since Left’s man can move 5 times and Right’s only 3, the value is 5 — 3 = 2 spare
moves for left.

L l L

(a) (b) ()
Figure 11. Some Ski-Jumps Positions.

We can similarly evaluate any other position in which no further jumps are possible. Thus
in Fig. 11(b) Left has one man on the row above Right's, and another lower down, but still
no jump will be possible, for Left’s upper man has been demoted to a mere slipper (hence his
lower case name, [), while his lower man, being two rows below Right’s, is not threatened.
Left’s two men have collectively 2 + 5 moves to Right’s 8, so the value is

24+5-8=-1

moves to Left, that is, 1 move in favor of Right.

Now let’s look at Fig. 11(c), in which Left’s man may jump over Right’s, if he wishes. If
he does so, the value will be 4 — 2 = 2, which is better than the value 3 — 2 = 1 he reaches by
sliding one place East. If, on the other hand, Right has the move, it will be to a position of
value 4 — 1 = 3. So the position has value

{2

moves to Left. More generally, if Left has a single man on the board, with a spaces (and hence
a + 1 moves) before him, and Right a single man with b spaces before him, and one of the two

3} =21
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men is now in a position to jump over the other, the value will be

a b}%ora b-%

according as it is Left’s or Right’s man who has the jump. We can think of an imminent jump
as being worth half a move to the player who can make it.

Figure 12 shows all the positions on a 3 x 5 board in which there are just two men, of which
Left’s might possibly jump Right’s either at his first move or later.

R R

L L
R R R
{-2lo0} = - {olt}= i‘ {l33=2
L L L (.
R R R R

(aibl=-2 (kigleo {2a)e1 0 (28j44)=3
/N /N
L
R

L L
R R

L
R

e

NN SN AN

Figure 12. Ski-Jumps Positions on a 3 x 5 Board.
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Don't Just Take the Average!

The positions in the bottom two lines are those we have just analyzed, in which the jump is
imminent or past. From any of the other positions, Left has just one move, to the position
diagonally down and left from the given one, and Right similarly has a unique move, to the
position diagonally rightwards. We have appended the values of all these positions, measured
as usual in terms of free moves for Left, and there are some surprises. We have evaluated the
rightmost position on the fourth row as

(2413} =3

Surely this is wrong? Anyone can see that the average of 2% and 4% is 3%, can’t they?

Well yes, of course 3% is the average, but it turns out that the value is 3, nevertheless. You
don’t simply evaluate positions in games by averaging Left’s and Right’s best moves! Exactly
how you do evaluate them is the main topic of this book, so we can't reveal it all at once. But
we will explain why the second position on the fourth row has value 0, rather than %, as
might have been expected.

If the value were % or any other negative number, Right ought to win, no matter who
starts. But in this position, if Right starts, Left can jump him immediately, after which they
will have just three moves, and Right will exhaust his before Left. In fact neither player can
win this position if he starts, for if Left moves first, Right can slip leftwards past him to avoid
the threatened jump, leaving Left with but two moves to Right’s three. A position in which
the first player to move loses always has value zero.

We could have seen the same thing from the symbolic expression { l%| %} for the position,
for since Left's best option has negative value he cannot move to it and win (if Right plays
well), and since Right’s best move is positive, he cannot move to win either. It does not matter

Figure 13. The value of a Potential Jump is 1, % or 0.
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exactly how much each of these moves favors the second player, so long as he is assured of
a win. So for exactly the same reason, the game {—%|17} = 0, since the starter loses, even

though 17 is much further above 0 than -—% is below it.

What Is a Jump Worth?

We do not explain the other values here. The reader can verify for example, that {2%|4%} =3,
by playing the position {2%|4%} together with an allowance of just 3 moves for Right, and
checking that the starter loses. We can summarize the results of Fig. 12 as follows: a potential
jump is worth half a move only if it is either imminent or the two players are the same
distance from the central column. It is worth a whole move (just as if it were a sure thing) if
the potential jumper is nearer to the central column than the jumpee and worth nothing (just
as if it were impossible) otherwise (Fig. 13).

We can now predict who will win the more complicated Ski-Jumps position of Fig. 10.
Because the pairs of rows A B,C are so far apart, moves made by the skiers in one of these
pairs will not affect the play in others, so we can just add up the values for the three pairs
AB,C (Fig. 14).

L R L
R L R
A=-1% B=-2 C=+43

Figure 14. Values of Ski-Jumps Positions in Figure 10.

The values for A and C can be read off from Fig. 12 as —-1% and +3, while that for B is

L

R (value 2) with the roles of Left and Right reversed, and so has value —2.

The total value is therefore
-11 -2+3=—-1,

and so Right is half a move ahead and should he able to win, no matter who starts. It will be
harder for him if he starts himself, since then he must use up a move. What move should he
make? His three choices are from
—14 to =1 (in A), —2to —1 (inB), and 3to 4% (in C)
which lose him
i, 1, 1

L=

moves respectively. So he can only guarantee to retain his win if he moves his A man, so as
to avoid the otherwise imminent jump by Left.
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Toads-and-Frogs

Left has trained a number of Toads (Bufo wvulgaris) and Right a number of Frogs (Rana
pipiens) to play the following game. Each player may persuade one of his creatures either to
move one square or to jump over an opposing creature, onto an empty square. Toads move
only Eastward, Frogs only to the West (toads to, frogs fro). The game is to be played according
to the normal play rule that a player unable to move loses. Verify the values in Fig. 16. Who
wins Fig. 15 and by how much?

Figure 15. A Game of Toads-and-Frogs.

Do Our Methods Work?

Several questions will have entered the reader’s mind. Can we really evaluate positions by
adding up numbers of moves advantage, even when they are fractions? Is it wise to regard
all positions in which the starter loses as having zero value? The answers are yes. For the
pragmatic reader perhaps the best proof of this pudding is in the eating—if he works out who
has more moves advantage this way he’ll be sure to pick the winner. Mathematical unbelievers
must await our later discussion.
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13

-.':-}};.
SiF

Figure 16. Values of Positions in 4-place Toad-and-Frog.




Extras

Under this heading we shall occasionally insert additional detail and examples which will
interest some readers, but might interrupt the general flow of ideas for others.

VWhat is a Game?

Our games of Hackenbush and Ski-Jumps are typical of many discussed in the first volume of
Winning Ways in that:

1. There are just two players, often called Left and Right.

2. There are several, usually finitely many, positions, and often a particular starting
position.

3. There are clearly defined rules that specify the moves that either player can make from
a given position to its options.

4. Left and Right move alternately, in the game as a whole.

5. Both players know what is going on, i.e. there is complete information.

o

There are no chance moves such as rolling dice or shuffling cards.

=~

In the normal play convention a player unable to move loses.

oo

The rules are such that play will always come to an end hecause some player will be
unable to move. This is called the ending condition. So there are no games which are
drawn by repetition of moves.

The reader should see how far his own favorite games satisfy these conditions. He will also
see from some of the comments below that many games not satisfving all the conditions are
also treated later in this book. But all the games we do treat satisfy 5 and 6.

Tic-Tac-Toe (Noughts-and-Crosses) fails 7. because a player unable to move is not
necessarily the loser, since ties are possible. We will give a complete analysis in Chapter 22,
and will discuss various generalizations, such as Go-Moku.

Chess also fails 7. and contains positions that are tied by stalemate (in which the last
player does not win) and positions that are drawn by infinite play (of which perpetual check
is a special case). However, Noam Elkies has applied our methods to some positions near the
end of the game.

The words “tied” and “drawn” are often used interchangeably, though with slight transat-
lantic differences, for games which are neither won nor lost. We suggest that drawn be used
for cases when this happens because play is drawn out indefinitely and tied for cases when
play definitely ends but the rules do not award a win to either player.

Ludo, Snakes-and-Ladders, and Backgammon all have complete information, but
contain chance moves, since they all use dice.

14
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Battleships, Kriegspiel, Three-Finger Morra, and Scissors-Paper-Stone have no
chance moves but the players do not have complete information about the disposition of
their opponent’s pieces or fingers. In both the finger games, moreover, the players move
simultaneously rather than alternately.

Monopoly fails on several counts. Like Ludo, it has chance moves and may have more
than two players. The players don’t have complete information about the arrangement of the
cards and the game could, theoretically, go on for ever.

Solitaire (Patience) played with cards and Peg Solitaire (Chapter 23) are one-person
games and in the first the arrangement of the cards is determined by chance.

The game of Life which we discuss in Chapter 25, is a no-player, never-ending game!

In Poker much of the interest arises from the incompleteness of the information, the chance
moves and the possibility of coalitions which arises in games with three or more players.

Bridge is peculiar in that it has two players, each a team of two persons, and a “player”
does not even have complete information about “his” own cards.

Tennis, Hockey, Baseball, Cricket, Lacrosse, and Basketball are also “two-person”
games, but there are difficulties in the definitions of appropriate “positions” and “moves”.

Nim (Chapter 2), Wythoff’s Game (Chapter 3), and Grundy’s Game (Chapter 4)
satisfy all our conditions and indeed a further one, that from any position exactly the same
moves are available to either player. Such games are called impartial. Games in which the two
players may have different options we shall call partizan. Blue-Red Hackenbush is partizan
because Left may only remove blue edges and Right only red ones; Ski-Jumps because different
players control different skiers.

Dots-and-Boxes is usually won by the player scoring the larger number of boxes, so that
it does not satisfy the normal play convention. However, we shall see in Chapter 16 that in
practice it can almost always be treated as an impartial game, satisfying our normal play
convention, part of whose theory is closely related to Kayles and Dawson’s Kayles (see
Chapter 4).

Sylver Coinage, which we discuss in Chapter 18, is an impartial game which violates the
normal play convention because the last player to move is the loser. In Chapter 13 we show
you how to play sums of impartial games subject to this misére play convention.

Fox-and-Geese is a pursuit game which doesn’t satisfy the ending condition, but in
Chapter 20 we are able to compare its value with those of other partizan games which do
satisfy the condition. It is a loopy game in the sense of Chapter 11.

The French Military Hunt and other partizan pursuit games also yield to analysis in
Chapter 21.

The basic techniques that we originally presented in this book have been extended to give
insights into a much broader range of games than even we were able to imagine in 1982,

Amazons is a game in which each player controls several immortal chess queens. At each
turn, you move any one of your queens, and after making her move this queen must shoot a
flaming arrow, which also moves like a chess queen. The square on which the arrow lands is
then burned from the hoard. Neither Amazons nor arrows can jump over each other or over
burned squares. The game ends if a player is unable to move, and that player then loses.
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Players of Amazons have maintained a regular ratings system and have competed in tourna-
ments on the Internet since about 1990. The conventional version of Amazons is played on a
10x10 board. Each player has four Amazons, which start in a specified position.

Konane is a competitive form of peg solitaire which was popular in ancient Hawaii. It
is played with black and white Go stones on the squares of a rectangular Go board. 12x12
and 18x18 are common sizes. Initially, the entire board is filled with stones in checkerboard
fashion, black and white occupying alternate diagonals. Then two adjacent stones are removed
from the center of the board, and the game begins. At each turn, a player jumps an opposing
stone and removes it from the board. The game ends when someone is unable to move. In the
original version of the game, multiple jumps in a straight line are legal, but multiple jumps
which turn corners are not.

Go is a classical Asian board game which originated in China a few thousand years ago.
It now supports about 2,000 professionally ranked players and literally millions of amateurs in
Japan, China, Korea, Taiwan, Singapore, and many more thousands elsewhere in the world.
Two players called “Black” and “White” take turns placing a stone of his color on an intersec-
tion of a 19x19 board. Groups of opposing stones may be captured and removed under certain
conditions, but the primary objective is to surround territory. Although the basic rules are
conceptually simple, the fine print is sufficiently complicated that there are, in fact, more than
a half-dozen “dialects” of Go rules in use in different parts of the world today. Fortunately,
the fine print is relevant only in arcane situations which very rarely occur.

To extend the techniques of Winning Ways to Go has been a major preoccupation of
Berlekamp and his colleagues for the past 18 years. Fundamental challenges include the intri-
cacies of the various dialects of scoring rules, and of a wide variety of loopy positions known as
kos and superkos, which are the subject of yet more dialectical rule variations. More practical
challenges arise from the richness of the game. All of these challenges have been addressed,
with considerable success, in a sequence of publications that is destined to continue for several
more years.

When Is a Move Good?

We usually call a move “good” if it will win for you, and “bad” if it will not, and throughout
most of the book we will regard it as sufficient analysis to find any good move, or show that
none exists.

But in real life games there are many other criteria for choosing between your various
options. If you're losing, then all your options are bad in the above sense, but in practice
they're not all equal, and you might prefer one that makes the situation too complicated for
your opponent to analyze (the Enough Rope Principle).

There are even cases where you should prefer a bad move to a good one! Your opponent
might be learning how to play a game which you're already familiar with. In this case you’ll
probably be able to win a few times despite the bad moves you deliberately make so as not
to give your strategy away. Or one move, though theoretically the best, might gain you only
a dollar, while another, which theoretically loses a dollar, might actually get you a hundred
if your opponent fails to find the rather subtle winning reply. And of course you might be a
card sharp who’s playing badly now so as to win more later when the stakes are raised.
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Figure 8(d) Is Worth 2

O
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(a) (b)

Figure 17. How we can have Three-Quarters of a Move.

The Blue-Red Hackenbush position of Fig. 8(d) may be evaluated as follows. Write against
each edge (Fig. 17(a)) the value of the position when that edge is removed. Then the greatest
number against a blue edge (here %) is Left’s hest option and the least number against a red
edge is Right’s. So in the given case we obtain the expression

{31}
suggesting a value of 3 So if we add % and subtract 1 as in Fig. 17(b) we should obtain a
zero position. Check that whoever starts loses.

Verify that the Blue-Red Hackenbush positions in Fig. 18 have the indicated values, in
terms of moves advantage to Left.

~ ?
O O e

2 0 0 0
4+ -1 -4 H ¥ i 12

Figure 18. Values of some Blue-Red Hackenbush Positions.
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Finding the Correct Number is
Simplicity ltself

Simplicity, simplicity, simplicity. I say let your affairs be
as two or three, and not a hundred or a thousand; instead of a million
count half a dozen and keep your accounts on your thumbnail.
Henry David Thoreau, Walden.

And calculate the stars,
John Milton, Paradise Lost, VIII, 80.

We have seen that positions in Hackenbush and Ski-Jumps are often composed of several non-
interacting parts, and that then the proper thing to do is to add up the values of these parts,
measured in terms of free moves for Left. We have also seen that halves and quarters of moves
can arise. So plainly we’ll have to decide exactly what it means to add games together, and
work out how to compute their values.

Which Numbers Are Which?

Let’s summarize what we already know, using the notation
{a,b,e, ... | de, f,...}

for a position in which the options for Left are to positions of values a, b, ¢, ... and those for
Right to positions of values d, e, f,.... In this notation, the whole numbers are

0={]3} 1={|} 2={1|} ..., ntl={n]|}
for from a zero position, neither player has a move, and from a position with n + 1 free moves

for Left, he can move so as to leave himself just n moves, whereas Right cannot move at all.
The negative integers are similarly

1={]0}, -2={]|-1}, -3={|-2}, ..., =(n+1)={|-n}
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We also found values involving halves:
s={0]1}, 13={1]2}, 25={2]3} ...,

—+={-1]0}, -1i={-2|-1}, ..., andsoon

Our proof that {0 | 1} behaves like half a move was contained in the discussion of the
Hackenbush position of Fig. 6(a) in Chapter 1.

We also discussed a Hackenbush position (Fig. 8(a) of Chapter 1) whose value was {0 | %}
and showed that it behaved like one quarter of a move. So we can guess that we have all the
equations

{fo]1}= 3. {0|i}= 1 {0|3}= &, andsoon,

and leave a more precise discussion of what these equations mean until later.
Will there be any game with a position of value g? Yes, of course! All we have to do is

add together two positions of values % and % as in the Hackenbush position of Fig. 1.

Figure 1. A Blue-Red Hackenbush Position Worth Five-Eighths of a Move.

+ %, that is from the position

1
tos

What are the moves from the position %
1
2

which we write
o1} + {03}

in the new notation?

Each player can move in either the first or the second component, but must then leave the
other component untouched, so Left’s options are the positions

0+ é (if he moves in the first), and
% + 0 (if he moves in the second).

He should obviously prefer the latter, which leaves a total value of half a move, rather than
one-cighth of a move, to him. Right’s moves are similarly

1+ % and % + i
of which he should prefer the second, since it leaves Left only three-quarters of a move, rather
than one-and-one-eighth. We have shown that the best moves from % are to % (Left) and %
(Right), or in our abbreviated notation, we have demonstrated the equation

5= {L]3}
. 2 4 1"
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In a precisely similar way, we can add various fractions 1/2* so as to prove that

2p+1 2p 2p+2] p | p+1
2n+l - 2n+l 2n+1 - 2_'n gn :
or in words, that each fraction with denominator a power of two has as its Left and Right

options the two fractions nearest to it on the left and right that have smaller denominator
which is again a power of two. For example

35k ={3:%

58 29
1123} = {11{) 36_‘5 :

Simplicity’s the Answer!

The equations we've just discussed are the easy ones. What number is the game X = {1% | 217
We have already seen in our discussion of Ski-Jumps that we should not necessarily expect
the answer to be the mean of 1% and 2, that is, 1% Why not? We can test this question by

playing the sum
{11 |2}+{ 13 -13}
| -

15 11. Only if neither player has a winning move

Il

X+(1)

since we already know that -—lg =
in this sum will we have X = 12.

The two moves from the component X are certainly losing ones, because 1% is strictly
between 1% and 2, so that Left’s move leaves the total value li - 1% which is negative, while
Right’s leaves it 2 — 1% which is positive. But Right nevertheless has a good move, namely
that from —15—; to —1%. Why is this?

The answer is that in the new game

X+ (13 ={1g[2t+{-2] -1}

it is still true that neither player will want to move in the component X, for essentially the
same reason as before, since 1% still lies strictly between li and 2. So Left’s only hope for a
reply is to replace —1% by —2 which Right can neatly counter by moving from X to 2, leaving
a zero position.

So the reason that {li | 2} is not 15—; is that 1% is not the simplest number strictly between
1% and 2, because it has the Left option 11 with the same property, and we therefore find

2 =4
ourselves needing to discuss X + (—1%) before we can evaluate X + (—13).
Now 1% must be the simplest number between 1% and 2, because the immediately simpler
numbers are its options 1 and 2, which don’t fit. We shall use this to prove that in fact X = 1%.

It is still true for the position
X+ (-15)={17]2y+{-2| -1}
that neither player has a good move from the component X, so that we need only consider
their moves from -—1%. After Right’s move the total is X + (—1), to which Left can reply by

moving from the component X so as to leave the positive total 13 —1, because 1 is not strictly
between 1% and 2, but less than 1%. After Left’s move from —13, the total is X + (—2) and

13
13
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Right’s response is to the zero position 2 — 2, because 2 is no longer strictly between 1% and 2,
but this time equal to 2.

The argument can be used in general to prove the Simplicity Rule, which we shall use
over and over again:

If there’s any number that fits,
the answer’s the simplest number that fits.

THE SIMPLICITY RULE
If the options in

{a,b, e, ... | de, f....}

are all numbers, we'll say that the number x fits just if it’s

strictly greater than each of a,b,¢,..., and
strictly less than each of d, ¢, f,.. .,

and z will be the simplest number that fits, if none of its options fit. For the options of =
you should use the particular ones we found in the previous section.

For example, if the best Left move from some game G is to a position of value 2%, and
the best Right move to one of value 5, we can show that G itself must have value 3, which we
found before in the form {2 } }, for in this form 3 has only one option, 2, which does not lie
strictly between 2% and 5, while 3 does. Note that the Simplicity Rule still works when one
of the players, here Right, has no move from the number ¢. It also works for games of the
form {a | }oor { | b} in which again one of the players is deprived of a move. For example,
{a | } is a number ¢ which is greater than a, but has no option with this property. This is in
fact the smallest whole number 0 or 1 or 2 or ... which is greater than a. Thus {2% | } =3,

{-23]}=0.

Simplest Forms for Numbers

Figure 2 displays most of what we've learnt so far. The central ruler is the ordinary real
number line with bigger marks for simpler numbers, while below it are the corresponding
Hackenbush strings; the simpler the number the shorter the string,.

The binary tree of numbers appears upside-down above the ruler, although we can't draw
all of it on our finite page with finite type—for more details see ONAG!, pp. 3-14. Each fork of
the tree is a number whose best options are the nearest numbers left and right of it that are
higher up the tree. For example 1 and 2 are the best options for 1%. For 2 we find f and %, s0

16
13 3|7
16 |48
as a game. (The numbers on the leftmost branch have no Left options and those on the
rightmost branch no Right ones.)

IThroughout the book, ONAG refers to J.H. Conway, “On Numbers and Games”, 2nd edition, A K Peters,
2001
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Simplest Forms for Numbers
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Figure 2. Australian Number Tree, the Real Number Line, and Hackenbush Strings.
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The options of a number that we find in this way define its canonical or simplest form.
Here are the rules for simplest forms:

0= {[}
n+l = {n|}
-n—-1 = {|—n}
2p+1 {£ p+1}
29+1 219 29

SIMPLEST FORMS FOR NUMBERS
e.g. 79={78] }, 53 ={ |52}, and AL ={22]| 2} - (2| I}
The simpler the number, the nearer it is to the root (top!) of the tree.

Cutcake

Mother has just made the oatmeal cookies shown in Fig. 3. She hasn’t yet broken them up into
little squares, although she has scored them along the lines indicated. Rita and her brother
Lefty decide to play a game breaking them up. Left will cut any rectangle into two smaller
ones along one of the North-South lines, and Rita will cut some rectangle along an East-West
line. When one of the children is unable to move, the game ends and that child is the loser.

v
y

T

|

|

Figure 3. Ready for a Game of Cutcake.
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We'll evaluate the positions in this game using the Simplicity Rule. Plainly a single square
O leaves no legal move for either player, and so is a zero position. The 1 x 2 rectangle (11
gives just a single free move for Lefty, the 1 x 3 rectangle 01 two free moves for him, and
so on. When these rectangles are turned through a right angle, they vield the corresponding
numbers of free moves for Rita instead.

The 2 x 2 square is the zero position {2 | 2}, for when Lefty starts, he leaves two moves for
Rita, and if she starts, she must leave two moves for him. So let’s consider the 2 x 3 rectangle

Since this has more vertical lines than horizontal ones, it should perhaps be a win

for Lefty? No! If he starts he must leave a 2 x 1 rectangle, which is one move in favor of
Rita, together with a 2 x 2 square, which we can ignore as having value zero. But Rita can’t
win either, for her only opening move gives Left four free moves. So the 2 x 3 rectangle is the

zero position {—1 | 4}. But the 2 x 4 rectangle is long enough to favor Lefty, for if

he chops it into two 2 x 2 squares at his first move, he wins, and he plainly wins if Rita is

made to start. In fact we have
E + : + ‘ +

= {14 0 , 0+ 0 | 3+3}
= {-1.0]6},

which the Simplicity Rule tells us is worth one move for Lefty.

Using arguments like these, we can draw up a table (Table 1) showing the values of the
rectangles of various sizes in Cutcake. We see that there is an interesting pattern—the border
of the table is divided into 1 x 1 squares each holding a different integer, corresponding to the
values of strips of width 1. But then there's a second border of 2 x 2 squares which is a bit
harder to explain.

Thus all the four rectangles of breadth 2 or 3 and depth 4 or 5 have the same value, —1,
meaning that they count as one free move for Rita. (We already saw that the 2 x 2 and 2 x 3
rectangles had the same value, namely 0.) Then the table continues with a border of 4 x 4
squares, followed by a fourth of 8 x 8 squares, and so on. So all rectangles whose depth is 4,
5, 6 or 7, and breadth 8, 9, 10 or 11 have value 1, and behave like a single free move for Lefty,
despite their variable shapes.

Let’s consider a fairly complicated example, the 5 x 10 rectangle. Lefty can split 10 into
1+9,24+8,34+7,446 or 5+ 5 and we can read the values of the corresponding rectangles
5x 1 and 5 x 9, etc. from Table 1 to see that Lefty’s options have values

—441, =141, =140, 040, 040

Il

Rita can split 5 into 1 + 4 or 2 + 3 yielding pairs of breadth 10 rectangles of values 9 + 1 or
4+ 4. So the 5 x 10 rectangle has value

{-3,0,-1,0 0]10, 8} ={0|8} =1,

and Table 1 is continued in this way.
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Breadth
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
101123456789 |10/11(12({13|14]|15
2 (-1
0 1 2 3 4 5 6
3|-2
4|-3
-1
5 |—4
0 1 2
6 |—5
Depth -2
7—-6
8|7
-3
9|-8
—-1
101-9
—4
11|-10
0
12|11
-5
13|12
-2

Table 1. Values of Rectangles in Cutcake.

Maundy Cake

Every Maundy Thursday Lefty and Rita play a different cake-cutting game, in which Lefty’s
move is to divide one cake into any number of equal pieces, using only vertical cuts, while Rita
does likewise, but with horizontal cuts. Once again the cuts must follow Mother’s scorings, so

that all dimensions will be whole numbers.

This game was proposed and solved by Patrick Mauhin—can you see the general pattern

in his table of values (Table 2) 7 We worked them out as follows:

value of | twelve of sixof four of three of two of

Fx12 H5x1l 7T5Hx2 hx3 H x4 5x6
| twelve of sixof four of three of two of
- -1 0 0 ! 1 ! 1

{-12 ., 0 , 0 , 3 ., 2

Il
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A Few More Applications of the Simplicty Rule

1 2 3 4 5 6 7 8 910 1112 13 14 1516 17 18
o 1 1 3 1 4 1 7 4 6 110 1 8 615 1 13
-1 0 0 1 0 1 0 3 1 1 04 0 1 1 7 0 4
-1 0 0 1 0 1 0 3 1 1 04 0 1 1 7 0 4
-3-1-1 0-1 0-1 1 0 O-1 1-1 O O 3-1 1
-1 0 0 1 0 1 0 3 1 1 04 0 1 1 7 0 4
-4-1-1 0-1 0-1 1 0 O0-11-1 0 0 3 -1 1
-1 0 0 1 0 1 0 3 1 1 04 0 1 1 7 0 4
-7-3-3-1-3-1-3 0-1-1-3 0-3-1-11-3 0
-4-1-1 0-1 0O-1 1 0 O0-1 1-1 0 0O 3 -1 1
-6-1-1 0-1 0-1 1 0 0-11-1 0 0 3~-1 1
-1 0 0 1 0 1 0 3 1 1 04 0 1 1 7 0 4

Table 2. Maundy Cake Values.
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If you haven't guessed a general rule, you'll find ours in the Extras. If you have, try it out
on the 999 x 1000 cake, or the 1000 x 1001 one.

A Few More Applications of the Simplicty Rule

The more questionable values for Ski-Jumps and Hackenbush positions are easily understood
in terms of the Simplicity Rule. For example the Ski-Jumps position

L

L

L

R

R

has value {2% | 4%} which the Simplicity Rule requires to be 3, just as we said. The last
Hackenbush position
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of Fig. 18 in the Extras to Chapter 1 can be seen to have value {%% | 2} = 1 by another
application of the Rule. Values of more complicated positions such as the horse of Fig. 4 can
be found by repeated applications. We have followed the recommended practice of writing
against each edge the value of the position which would result if that edge were deleted. These
positions will either be found later in the figure or are sums of the simple positions discussed
in Chapter 1.

Figure 4. Working Out a Horse.

Positive, Negative, Zero, and Fuzzy Positions

We can classify all games into four outcome classes, which specify who has the winning strategy
when Left starts and who has the winning strategy when Right starts, as in Table 3. It may
happen that Left can win no matter who starts—in this case we shall call G positive, since
we are in favor of Left. Conversely, if Right wins whoever starts, we shall call ¢ negative. In
the other two cases, the player who wins may be Left or Right depending on who starts. If
the player who starts is the loser, we have already called the game a zero game, and if the
player who starts is the winner, we shall call it a fuzzy one.
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If Left starts

Left wins Right wins

positive Zero
It Left wins L wins 2 wins
Rt : ns | )| : )
starts Right wins fuzzy negative
(1 wins) (R wins)

Table 3. The Four Possible Outcomes.

A handy way of remembering these four cases is just to describe the player who has the
winning strategy—this is either Left, Right, or the first, or the second player to move from the
start. In symbols, we have

G > 0 or G is positive  if player L (Left) can always win
G < 0 or G is negative if player R (Right) can always win
G = 0 or ¢ is zero if player 2 (second) can always win
G || 0or G is fuzzy if player 1 (first) can always win.

In Blue-Red Hackenbush we’ve already seen that a picture with only blue edges is positive (if
there are any), and one with only red edges is negative. A picture having no edges is zero, but
there are also other zero pictures, for example any picture with as many red edges as blue in
which each edge is connected to the ground by its own color, or the rather simple picture of
Fig. 6(c) in Chapter 1, which has two blue edges and three red.

There are no fuzzy positions in Blue-Red Hackenbush, which makes it rather unusual,
because in most games it is some advantage to be the first player. So to get more varied
behavior, we introduce a new kind of edge.

Hackenbush Hotchpotch
This game is played as before except that there may also be some grFen edges, which Either
player may chop. But blue edges are still reserved for Left, and red ones for Right and we
continue to use the normal play rule, that when you can’t move, you lose.

The pretty flower of Fig. 5(a) is an example of a fuzzy position in Hackenbush Hotchpotch,
for since its stalk is green, either player may win the game at the first move by chopping
this edge.

ial 1.1}

Figure 5. Two Fuzzy Flowers make a Positive Posy.
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It might be thought that, like a zero game, a fuzzy game confers no particular advantage
on either player, and so should also be said to have value 0. But this would be a misleading
convention, because often a fuzzy game can be more in favor of one player than the other, even
though either player can win starting first. For example, the flower of Fig. 5(a) has more blue
petals than red ones, and this favors Left by just enough to ensure that the sum of two such
flowers, as in Fig. 5(b), is positive. For no matter who starts in Fig. 5(b), Left has enough
spare moves to arrange that Right is first to take a stalk, whereupon Left wins by taking
the other.

In fact a fuzzy game is neither greater than 0, less than 0, nor equal to 0, but rather
confused with 0. Figure 6 shows a good mental picture, illustrating a fuzzy game G whose
place in the number scale is rather indeterminate, being represented by the cloud. Since this
covers 0 and stretches some way on either side, we can’t tell exactly where (¢ is. It's probably
buzzing about under the cloud, so that it seems positive at some times, and negative at others,
according to its environment.

Figure 6. How Big is a Fuzzy Game?

Sums of Arbitrary Games

Figure 7. Ready to Play the Sum of Two Games.
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Now that we've learned how to work with numbers and how to find when games are positive,
negative, zero, or fuzzy, we should learn what it means to add two games in general. Being
very clever, Left and Right may play a sum of any pair of games & and H as in Fig. 7. We
shall refer to the two games G and H as the components of the compound game G + H,
which is played as follows. The players move alternately in G + H, and either player, when it
is his turn to move, chooses one of the components G or H, and makes a move legal for him
in that component.

The turn then passes to his opponent, who plays in a similar manner. The game ends as
usual when some player finds himself unable to move (this will only happen when there is no
component in which he has a legal move) and that player loses.

Symbolically we shall write G for the typical Left option (i.e., a position Left can move
to) from G, and G¥ for the typical Right option, so that

G = {GL ‘ GR}

We use this notation even when a player has more than one option, or none at all, so that the
symbol G* need not have a unique value. Thus if G = {a,b,c,... | d,e, f,...}, G¥ means a or
borecor...and GF means dor e or f or ... . In the game 2 = {1| }, GE has only the value
1, but GF has no value. In this notation the definition of sum is written

G+ H = {GL+H,G+HL GR+H,G+HR}

since Left’s options from G + H are exactly the sums GL + H, or G + H™ in which he has
moved in just one component, and Right's are the similar sums GF + H, G + HE.

It should be made clear that there is no restriction on the component a player moves in
at any time other than his ability to move in that component. You need not follow your
opponent’s move with another move in the same component, nor need you switch components
unless you want to. Indeed in many games (e.g. Blue-Red Hackenbush and Cutcake) a move
may produce more than one component.

The Qutcome of a Sum

The major topic of this book is the problem of finding ways of determining the outcome of
a sum of games given information only about the separate components, so we cannot expect
to answer this question instantly. But we should at least expect that if both G and H are in
favor of Left, so is G + H and this turns out to be the case. In fact we can strengthen the
assertion a little, by allowing zero games.

If G and H are greater than or equal to 0, so is G + H.

What does it mean for GG to be greater than or equal to 07 From Table 3, we see that these
are just the two cases in which Left has a winning strategy provided Right starts. If this is
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true of G and H, it is also true of G + H, for if Right starts, he must make a move in one of G
and H, say G, and Left can reply with the responses of his winning strategy in G for as long
as Right continues to move in that game. Whenever Right switches to H, Left responds in H
with the moves of his winning strategy in that game, and so on. If he plays like this, Left will
never be lost for a move in G + H, for he can always respond in whatever component Right
has just played in, so he cannot lose.

Now we have another principle, which covers some fuzzy games:

If G is positive or fuzzy, and
H  is positive or zero, then
G+ H  is positive or fuzzy.

For we see from Table 3 that the positive or fuzzy games are just those from which Left has a
winning strategy provided Left starts. So what we have to show is that if Left has a winning
strategy in G with Left starting, and one in H with Right starting, he has one in G + H with
Left starting.

This is easy. He starts in G + H by making the first move of his winning strategy for G,
and then always replies to any of Right’s moves with another move in the same component,
so that the sequence of moves played in GG is begun by Left and that in H by Right. If Left
follows his two winning strategies in the two components he will therefore win their sum.

We can summarize these results, and those obtained by interchanging the roles of Left and
Right, in symbols:

G >0and H > 0then G+ H >0,
IfG <0and H <0 then G+ H <0,
If GI=0 and H > 0 then G + H [0,
If G0 and H < 0 then G + H<|0.

LA |

Here “=" means “=" or “=", “«|” means “<” or “||”, etec.
In particular if H is a zero game, it may be used in all four lines, and then G+ H will have
the same outcome as  in all circumstances.

Adding a zero game never affects the outcome.

We've already seen some of these principles in action in Blue-Red Hackenbush. But now
we know that they work for arbitrary games and did not depend on the fact that the positions
we evaluated in Hackenbush turned out to be numbers. Table 4 shows the possibilities for the
outcome of G + H, given those of G and H.

Any Hackenbush picture in which only blue edges touch the ground is positive, for plainly
the last move will be Left’s. In particular the house of Fig. 8 is positive. But the garden is also
positive, for it is made up from two of the positive posies of Fig. 5(b). So the whole picture
can be won by Left, no matter who starts.
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H=0 H=>0 H<0 H |0
G=0|G+H=0 G+H>0 G+H<0 G+HI|O
G>0|G+H=0 G+H=>=0 G+H?70 G+ HEB0
G<0|G+H<0 G+H?T0 G4+H<0 G+ HAO
G|l|0O|G+H|0 G+HR0 G+H<0 G+H?0

Table 4. Outcomes of sums of games. The entries G + H 7 0 are unrestricted.

Figure 8. A Positive House and Garden.

The Negative of a Game

In our examples of Blue-Red Hackenbush we found that whenever we interchanged the colors
red and blue throughout, the number representing the value changed sign. This suggests
that in general we define the negative of a game by interchanging the roles of Left and Right
throughout. So, from no matter what position of &, the moves that once were legal for Left
now become legal for Right, and vice versa. If G is the position

G={A,B,C,... | D,E F,.. .},
then —G will be the position
-G ={-D,-E,-F,... | —-A -B,-C,...}.

For the general game G = {G* | G®} we have

-G::{-GR‘_GL}

This definition works even when applied to fuzzy positions. Let’s see what it means in
practice. The negative of any Hackenbush position is obtained by interchanging the colors red
and blue. Any green edges are unaltered. So for example the negative of the flower of Fig. 5(a)
is a similar flower, but with three red and two blue petals instead of three blue and two red.
A Hackenbush picture made entirely of green edges will therefore be its own negative. This
means in particular that the little forest of Fig. 9 is a zero game, for it consists of the sum of
two trees and their negatives (which have the same shape).
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Figure 9. Under the Greenwood Trees.

But no single tree of this forest is zero (the first player could win by chopping its trunk),
and in fact the sum of one large and one small tree from Fig. 9 is also non-zero (chop the
larger one’s horizontal branch). So G + G can be zero without G’s being zero. In fact we'll
meet the commonest such game, Star, in just a few pages. Star is its own negative.

Cancelling a Game with its Negative

Is the negative of a game properly defined? Is it really true that the sum of a game and its
negative is a zero game? How does the second player win the compound game G + (—G)?

Figure 10. Playing a Game with its Negative.

The answers are fairly obvious. The first player must move in some component—Ilet’s
suppose he moves from G to H, making the total position H + (—G). Then by the definition
of —G, the move from —G to —H will be legal for his opponent, who can therefore convert
the whole position to H + (—H). The first player might then move to H + (—K), but this
the second player can convert to K + (—XK), and so on. In other words, the second player can
always mimic his opponent’s previous move by making an exactly corresponding move in the
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other component. If he does this, he will never be lost for a move, and so will win the game.
This is, of course, simply the Tweedledum and Tweedledee Argument, which we learned in
Chapter 1.

For any game G, the game G + (—G) is a zero game.

We are only discussing finite games, so the ending condition prevents draws by infinite play.

Comparing Two Games

We shall say that G is greater than or equal to H, and write G > H, to mean that (i is at least
as favorable to Left as H is. What exactly does this mean? We can get a hint from ordinary
arithmetic, when x > y if and only if the number & — y is positive or zero. Let’s take this as
the definition for games:

G > H means that G+ (—H) > 0.

Then it's easy to see that if G = H and H > K, we have G > K. For G + (—K) has the
same outcome as G + (H + (—K)) + (—H), since H + (—H) is a zero game, and this can be
written as the sum of G+ (—H) and H + (— K, which are both > 0. Appealing to our results
on sums of games, we see that G + (—K) > 0, that is G > K. In a similar way, from Table

4 we derive Table 5, showing what we can deduce about the order relation between G and K
from those between GG and H and H and K.

H=K H>K H<K H|K

G=H|G@=K G>K G<K G| K
G>H |G>K G>K G?'K GIbK
G<H |G«K G?TK G<K GaK
G|H|G|K GrK G<aK GTK

Table 5. What relation is G to K 7

Here G = H means that ¢ and H are equally favorable to Left
G > H means that G is better than H for Left
G < H means that G is worse than H for Left
G || H means that G is sometimes better, sometimes worse, than H for Left.

Once again “|=" means “>" or “||”, etc.

Comparing Hackenbush Positions

The comparisons we made between Blue-Red Hackenbush positions in Chapter 1 are still valid,
but more general things can happen when we meet fuzzy positions. Let’s discuss the flower
of Fig. 5(a). This is fuzzy as it stands. How much do we have to add to it before it becomes




36 Finding the Correct Number is Simplicity Itself &

positive? It’s not too hard to see that adding one free move for Left is already enough, since
Left can win no matter who starts, by chopping the flowerstalk if this is still available, and
using his free move if not.

1 i
Flower + 5 Flower - 3

(a) (b)
Figure 11. The Flower is Dwarfed by Very Small Hollyhocks of Either Sign.

Is half a move still enough? The answer again turns out to be “yes”, and in fact Fig. 11
shows that even a very small fraction of a move is ample. Figure 11(a) adds only ﬁ of a move
to the flower, but it is still clear that Left still wins by essentially the same strategy, giving
first preference to chopping the flowerstalk, and if the flower has already gone, chopping the
blue edge of his allowance. In Fig. 11(b) we have subtracted ﬁ of a move, and this time
Right wins by a similar strategy.

This means that the flower must be very small indeed—we have just proved that

—ﬁ < flower < +ﬁ
and of course our argument is actually enough to show that the flower is greater than all
negative numbers and less than all positive ones, although still not zero. So the only number
its cloud covers is (0 itself (see Fig. 12).

The same kind of argument proves a much more general result, that any Hackenbush picture

in which all the ground edges are green has a value which lies strictly between all negative and

£

&
-2 -4 & 1 2

Figure 12. The Cloud Hides the Flower, but Covers only one Number.
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all positive numbers. Right can win when we subtract llﬁ from such a picture hy giving first

priority to chopping any ground edge of the picture, and removing his free move allowance
only when the rest of the picture has vanished. So the house of Fig. 13 is less than any positive

number. But Left can win in this picture by itself, so although the house is small, it’s quite

Figure 13. A Small but Positive House.

definitely positive (compare Fig. 5(b)). (The fight is about who chops one of the walls, for his
opponent will win by chopping the other. If Left works down the edges available to him from
the chimney, he can make at least 5 moves to Right’s at most 4 before a wall need be chopped.)

The Game of Col

Colin Vout has invented the following map-coloring game. Each player, when it is his turn to
move, paints one region of the map, Left using the color blue and Right using red. No two
regions having a common frontier edge may be painted the same color. Whoever is unable to
paint a region loses. Let us suppose that Right has made the first move in the very simple
map with three regions shown in Fig. 14(a). What is the value of the resulting position?

The effect of Right’s move has been to reserve the central region for Left so that we can
think of it as being already tinted blue (Fig. 14(b)). In general any unpainted region next

(b)

0
(c)
Figure 14. A Simple Game of Col.
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to a painted one automatically acquires a tint of the opposite color, indicating that only one
player may use it thereafter. In the figures tinting is represented by hatching. Figure 14(c)
shows the results of each possible move from Fig. 14(b). If Left exercises his first option, there
will remain one unpainted region, but this will be tinted red and so have value —1. After his
second option, the unpained region is tinted both red and blue, so neither player may use it
and the wvalue is zero. Right’s only possible move leaves a blue tinted region, value 1. The
value of Fig. 14(a) is therefore {—1,0 | 1} = 1.

A Star is Born!

(a) (b)

Figure 15. A Startling Value.

In Fig. 15(a) the only available region is not restricted in any way. Either player may therefore

paint it and so move to a position of value zero. The value of Fig. 15(a) is therefore {0 | 0}.

How should we interpret this? The Simplicity Rule will not help us, for there is no number

strictly between 0 and 0, but we should expect the value to be less than or equal to each of
{01}, {0]35}, {0] %} ...,

since Right’s option 0 is less than or equal to each of

1 L L ..
1 2 4
In other words the value is less than or equal to each of
1 1 1

T s F 9 B g eees
Since it is also greater than or equal to the negatives of these, one might guess the value 0.

But is Fig. 15(a) a zero position? No! For whoever starts is the winner, not the loser. In
fact, the position is fuzzy. Since the value {0 | 0} arises in many games, it deserves a proper
name, and we write it %, pronounced Star. A solitary green stalk in Hackenbush has a value
# (Fig. 15(b)), since again each player must end the game with his first move.

Although the value * is not a number it can perfectly well be added to any other positions,
whether their values are numbers or not. For instance the entire Fig. 15 can be regarded as
a compound position in the sum of a Col game with a Hackenbush one, and has value * + =.
Who wins this compound position? If you start and paint the region, I shall take the stalk
and finish. If you take the stalk, I shall paint the region. In either case the second player wins
and so the value is zero!
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More generally, we consider positions of value {x | x} for any number z. This is strictly
greater than every number y < z and strictly less than every number z > z, but neither
greater than, less than nor equal to z itself. We can also add such values to other values of
the same kind or to numbers.

Let us add 2 to #, that is {3 | 1} + {0 | 0}. Left has two options § + * (moving from %)
and % + 0 (moving from =), and Right has the two options 1 + =, Z" + 0. Since = < ﬁ, Left’s
best option is Z; and this is also Right’s best option for the same reason. So we have

tre=(3]3
and more generally

:I‘+*={:L‘|:L‘}

for any number x.

THE VALUE x+*

This type of value occurs so often that we’ll use an abbreviated notation
x=x for x4+

just as people write 2% for 2 + % You must learn not to confuse x* with = times #, just as

you don’t confuse 2'21" with 2 times %

Col Contains Such Values

For example, in the position of Fig. 16(a), which has tints as in Fig. 16(b), the players have
the options shown in Fig. 16(c). It therefore has the value {#, 1,1 | 1}. Since the values x
and —1 are both less than 1, this simplifies to {1 | 1} = 1=.

umnm:!’”““’WW"”’

Figure 16. The Value of a Col Position.
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Game Trees

We usually display games by trees, with nodes for positions and edges for moves, as in the

AN A

0 {of }=1 { Joj=~ il 3=2  (ol13-% {0l%}= %

NN

{010}~ % {11)= 1 fo.x[0.4- %2 fo[+-1

Of course we use edges slanting to the left for Left’s moves and to the right for Right's. This
can help you to see that games that superficially look very different may have the same essential
structure (e.g. Figs. 15(a) and 15(b)). In complicated positions we often combine nodes to
avoid repetitions and we sometimes draw the diagrams upside-down as we did for Ski-Jumps
and Toads-and-Frogs in Figs. 12 and 16 of Chapter 1.

Green Hackenbush, The Game of Nim, and Nimbers

In Chapter 7 we shall give a complete theory for Hackenbush pictures that are entirely green,
containing neither blue nor red edges. Of course the game represented by a green Hackenbush
picture is an impartial one, in the sense that from any position exactly the same moves are
legal for each player. There are several of our chapters (4, 12-17) devoted to impartial games,
which make it clear that the game of Nim plays a central role in the theory of such games. We
shall introduce this game by analyzing some particularly simple green Hackenbush positions.

A very simple kind of green Hackenbush picture is the green snake, which consists of a
chain of green edges with just one edge touching the ground. It will not affect the play to
bend some of the topmost edges into loops, so allowing our snakes to have heads. Figure 17
illustrates a number of snakes, those of length one being perhaps better called blades of grass.
How shall we play such a game?
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Figure 17. Latet anguis in herba (Virgil, Eclogue, III,93).

Plainly any move will affect just one snake, and will replace that snake by a strictly shorter
one. This means that if we write #n for the value of a snake with n edges (counting the head
loop, if present), then we have

#0 = { | } =0,

#1 = {0 | 0} = {0 | 0}, the game we called *,

2 = {x0,#1 | %0, %1} = {0,% | 0,%}, ...,

wn = {0, x1 %2, ... * (n—1) | w0, 41, %2, ...« (n—1)}.

These special values are called nimbers and you’ll hear about them incessantly from now
on. The fact that the same options appear on both sides of the } emphasizes the impartiality
of the game.

It might be safer to play the game with heaps of counters instead of snakes. In this form,
the general position has a number of heaps, and the move is to remove any positive number of
counters from any one heap. In the normal play version, the winner is the person who takes
the last counter. So this is the same as the snake game, with an n-edge snake replaced by a
heap of n counters, and Fig. 17 becomes Fig. 18.

Figure 18. A Simple Nim Position.

The game is the celebrated game of Nim, analyzed by C. L. Boulton, and we shall meet it
again and again, for R. P. Sprague and P. M. Grundy showed (independently) that it implicitly
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contains the additive theory of all impartial games. For the moment, we refrain from giving
the theory in general (see the Extras to Chapter 3), and just deseribe a few simple positions
and equalities.

Get Nimble with Nimbers

Firstly, note that a single non-empty heap is fuzzy, for the first player to move can take the
whole heap. In the Hackenbush form, he chops the bottom edge of the snake. Next, two heaps
of equal size add up to zero, for the impartiality ensures that a position is its own negative.
So any pair of equal heaps in a position may be neglected—this allows us to neglect all four
blades of grass in Fig. 17. On the other hand, the sum of two unequal heaps is a fuzzy game,
for the first player can equalize them by reducing the larger one.

These remarks show that in a three-heap game, the player who first (fatally) equalizes
two of the heaps or empties any heap is the loser, for in the first case his opponent can
remove the third heap, and in the second, equalize the two non-empty heaps. But in the
position *1 + *2 + =3, every move of the first player loses for one of these reasons, and so
#1 + %2 4 3 = (. Since nimbers are their own negatives this can also be written in any of the
forms

#] 4 %2 = %3, =l %3 ==x2, %24 %3 = =],

which are very useful in simplifying positions. For example, any situation in which there is
one heap of size 2 and another of size 3 may be simplified by regarding these as a single heap
of size 1.

From the position *1 + %4 + *5, if either player reduces one of the larger heaps to 2 or 3,
the other player can reduce the other to 3 or 2 respectively. Since all the other moves are fatal
for one of our two reasons, this shows that #1 + =4 + %5 = 0, enabling us in general to replace
two heaps of any two distinct sizes from 1, 4, 5 by one heap of the third size.

The equality =2 + %4 + %6 = 0 can be checked in a similar way. If either player reduces
one of the larger heaps to 1 or 3, his opponent can reduce the other to the other, getting
#2 + *1 4+ *3. The only other moves not obviously fatal are to reduce 2 to 1 or 6 to 5, and
these counter each other since #1 + %4 + +5 = 0.

We can now do some rather clever nimber arithmetic:

#3 + *h = 2 + 1 4 %5 = %2 + x4 = %6,
so we have another equality, representable in any of the ways
#3 4 =5 = *6, =3+ %6 =*H, #H+ =6 =%3, *3 4+ *H+ 6= 0.

Later on we shall show that the sum of any two nimbers is another nimber, and give rules
for working out which one it will be. But we already have more than enough to work out who
wins the game of Figs. 17 and 18, and how. Since the four blades of grass can be neglected, the
value of this is #5 + %6 + %4 = #3 4 *4, which, being fuzzy, is a first player win by reducing 4 to
3. So one winning move is to chop the head off the third snake, reducing his value from *4 to
#3. The diligent reader should check that the only other two winning first moves are to reduce
#5 to 2 and *6 to 1. Our Most Assiduous Reader will prepare an extended nim-addition
table using our examples as basis.
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Childish Hackenbush

==

O ——m e B T e ® et ot

(a) (b)

Figure 19. Childish and Grown-Up Pictures.

We call a Hackenbush picture childish because every edge is connected to the ground,
perhaps via other edges. For example, the house of Fig. 19(a) is childish, but that of Fig. 19(b)
is not, because the window will fall down and no longer be part of the position. The rule in
ordinary Hackenbush is that edges which might make a picture non-childish are deleted as
soon as they arise. However in Childish Blue-Red Hackenbush (J. Schaer) you are only
allowed to take edges which leave all the others connected to the ground; nothing may fall
off. It might be thought that this is not a very interesting game. However Childish Blue-Red
Hackenbush is far from trivial and the reader may like to verify the values of the positions in
Fig. 20, and to compare them with the values of ordinary Blue-Red Hackenbush in Fig. 16 of

Chapter 1.
>
2 0 0 -1 1 0

o] ]

e o O e o

} o= 0

Figure 20. Values of Childish Blue-Red Hackenbush Positions.

Some Childish Hackenbush positions with non-integer values can be found in the Extras.
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Seating Couples
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Figure 21. A Dinner to Celebrate the End of Chapter 2.

Figure 21 shows the dining table around which Left and Right are taking turns to seat
couples for a dinner to celebrate the end of this chapter. Left prefers to seat a lady to the
left of her partner, while Right thinks it proper only to seat her to the right. No gentleman
may be seated next to a lady other than his own partner. The player, Left or Right, who first
finds himself unable to seat a couple, has the embarrassing task of turning away the remaining
guests, and so may be said to lose.

Of course the rules have the effect of preventing either player Left or Right from seating
two couples in four adjacent chairs, for then the gentleman from one of his two couples will be
next to the lady from the other. So when either player seats a couple, he effectively reserves
the two seats on either side for the use of his opponent only. So after the game has started,
the available chairs will form rows of three types:

LnL, a row of n empty chairs between two of Left’s guests,
RnR, a row of n empty chairs between two of Right’s, and
LnR or RnL, a row of n empty chairs between one of Left’s guests and one of Right’s.

Thus Fig. 21 is R12R. It is convenient to start the numbering from n = 0, but of course
disallowing the positions LOL and ROR in which one player has illegally seated two adjacent
couples. When we do this we have
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LnL = {LaL + LbL | LaR + RbL}
RnR = {RaL + LbR | RaR + RbR} (= —LnL)
LnR = {LaL + LbR | LaR + RbR} (= RnlL)

where a and b range over all pairs of numbers adding to n — 2, but excluding the disallowed
positions LOL and ROR. Of course this is because whenever a player seats a couple they occupy
2 of the n seats.

As an example we have

R3L + LOR %40
RER R2L + LIR | R2R + RI1R 0+0]1+0
P T Y RILAL2R|RIR+R2R ([~ Y 040 0+1
ROL + L3R 0+ *

which simplifies to {0, * | 1}. What value is this? To find out, we use the inequalities
-i << ﬁ, which tell us that

{0,311} < RSR < {0,711},

and 50 we must have R5R = % since the Simplicity Rule tells us that this is the value of both
{0,—% | 1} and {0, % | 1}. Verify in like manner the first few entries of Table 6. Who wins
Fig. 217
n 01 2 3 4 5 6 7 8 9 10 11 12 13 14
11 11 11 1
LnL - 0-1-1 %-5-5 0-3 -7 *—-35—35 —6
LnR=RnL |0 0 0 = == == 0 0 0 = * % 0 0 0
: 11 11 11 1

Table 6. Values of Positions in Seating Couples.




Extras

Winning Strategies

It is not hard to see that for games which satisfy the eight conditions given in the Extras to
Chapter 1, with a given player to start, say Right, there must be a winning strategy for either
Left or Right. We prove this as follows.

Suppose first that that there is a right option G¥ of G for which Right has a winning
strategy, supposing that Left starts in G®. Then of course Right has a winning strategy in
G—he moves to that G¥ and continues by playing his winning strategy for G¥.

If there is no such Right option, it may happen that all the Right options have winning
strategies for Left, supposing Left starts in them. But in this case Left has a winning strategy
in the whole game—he waits until Right has made his first move, which must be to some G¥,
and then Left continues play with his winning strategy in that GE.

So if neither player has a winning strategy from G under the supposition that Right starts,
there must be some G from which neither player has a winning strategy supposing Left starts.
This in turn involves the existence of some Left option GFL of that GF from which neither
player has a winning strategy supposing Right starts, and so on. But we obtain in this way
an infinite sequence

G — GF - GFE 5 GRLE

of legal moves in G. This shows that a play of G can last forever, which contradicts the ending
condition (8, in the Extras for Chapter 1) for G.

The Sum of Two Finite Games Can Last Forever

It is possible that two games D) and G which individually satisfy the ending condition might
have a sum D + @ that does not. For instance if Left can make an infinite succession of moves

in D:
DDy — Dy — ...

L L L

and Right an infinite succession of moves in G:

G—Gy Gy —...
R R R

then even though neither component game might have an infinite sequence of alternating Left
and Right mowves. there is such a sequence in the compound game D + G, namely

D+G-—-}D1+G—-}D1+Gl—-}D2+G1-—}D2+G2-—-}...
L R L R L

46
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Figure 22. An Infinite Delphinium and an Infinite Geranium.

If we compare the Hackenbush Hotchpotch picture of Fig. 22 with those of Fig. 5, we will
see that if play is restricted to the delphinium (or the geranium) only, then the first player
wins smartly by plucking the flower by its stem. But if both flowers are available, then neither
player will take a stem, lest his opponent grab the other and win the game. So each sits
plucking appropriate petals alternately and the game goes on forever.

If we want a condition that ensures that all sums of games will end, we should demand
that in no game is there any infinite sequence G — G; — G2 — ... of legal moves, alternating
or not. You must look in Chapters 11 and 12 if you want to know how to add games that
violate this condition.

A Theorem about Col

Each Col position has a value

zor{z |z} = zx

for some number z.

To prove this we'll use a notation like that we’ll introduce in Chapter 6 for the (contrasting)
game of Snort, namely:

L] for a region available to either player,
@ (blue)  for one usable by Left only,

O (red) for one usable only by Right, and

@9 (piebald) for one available to neither;

with edges joining these spots indicating adjacency of regions. The typical Left option is
obtained by deleting a node of type @or ®and adding a red tint to all adjacent nodes;
similarly for Right options.

We assert that for any GT or G we must have

Gldbx < G < GR 4%




48 Finding the Correct Number is Simplicity Itself &

As an example, the latter inequality is proved by providing the obvious imitation strategy that
wins for Left as second player in the difference game:

— — — —_

It follows that we have
every GF < every GF

Since these are simpler positions we know inductively that their values are either numbers
or numbers plus Star. Call the best Left options @ or z=#, and the best Right ones y or y#. If
z < y, then G’s value is a number by the Simplicity Rule. Otherwise G must be one of the
two forms

{z|z}=xx or {z+=]|z+x}

since the condition G < G® precludes such forms as
{z |z + =}

Col-lections and Col-lapsings

Here are the values of some Col positions in the above notation (Fig. 23), and some rules
collected from ONAG, for simplifying larger positions.

1. You may omit piebald nodes and edges connecting oppositely tinted nodes without al-
tering the value.

2. The value is unaltered or increased if you either

tint a node blue, or
delete an edge ending in a blue tinted node.

(Similarly with “decreased” and “red”.)

i
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4. The positions
all have equal value A, say, and the corresponding positions
and these
have values A + % and A % respectively.

5. If two joined untinted nodes are each connected to the same set of nodes, you may tint
one blue and one red (and then delete their join).

6. If the value of a configuration is unaltered, both when a node is tinted blue and tinted
red, it’s explosive and you may delete that node, even when it joins the configuration
to another. For example

®
—0-6 0-0-1. © _ |
= - + | and
— s — 3 = +—@—+ = +——e = & & =K+¥=10,
— o+ + = = i * = @ ———e—a = (O und
e ——9 = +—0o 9o+ o2 > +—0 — o = 0, 50

-5 058
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0-0-0-0——0-0 0 - - | ¢ = ¥
@ =@+ = @—+—o——o = cor = L
O O-@—+—0O=0——+—0 = =0 A:w
e & = &+ & & — b a8 = ass = I
-—@—— = o l—-==+ o——0— =
— O = @O =
AP P . S U N SN N —
OOt = @O O——@—— =3
>0 0 —O———0— =
0 —O—— 00— =1
0 — - OO ——0— - |

Figure 23. Some Col Values.

7. Other examples of explosive nodes are: any node in an untinted chain with at least three
others on each side; and the ones indicated by the lightning bolts in

A [
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8. A configuration having a symmetry moving every node and reversing any tints has value
0. For example

Nick Inglis has shown that there are Col positions with arbitrarily large denominators.

Maundy Cake

Here's how we work out the value M (r,1) of an r x [ cake (r rows, [ columns):

r = 999 : 333: 111: 37 1

[=1000: 500: 250: 125: 25: 5:1
M(999,1000) = 5 + 1 = 6 for Lefty, i.e. +6.
r=1000: 500: 250: 125: 25: 5:1
[=1001: 143: 13 : 1

M(1000,1001) = 25+ 5 + 1 = 31 for Rita, i.e. —31.

In every line you divide by the smallest possible prime to get the next number, stopping exactly
when you get to 1. You then add the “leftovers” as in the examples, and assign the game to
whoever has the longer sequence (so the value is 0 if Lefty’s sequence is the same length as
Rita’s).

Another Cutcake Variant

Dean Hickerson, who independently discovered the game of Cutcake, notes that if Lefty must
make v vertical cuts at each turn, and Rita h horizontal ones, then the value of an r x [ cake is
equal to that of an ordinary Cutcake of size [1] x f%-f To make a table of values, start with
a border of h by v rectangles in which the values are [ (I — 1)/v] along the top, 1 <r < h and
—[(r = 1)/h] down the left side, 1 <1 < v.

(The ceiling symbol, [ ], and floor symbol, | |, introduced by K. E. Iverson, and pop-
ularized by Donald Knuth, mean respectively, “least integer greater than or equal to” and
“greatest integer less than or equal to”.)

How Childish Can You Get?

When you compared the values in Fig. 20 with the ones in Fig. 18 of Chapter 1, you may have
thought that not only are the pictures simpler for Childish Hackenbush, but that the values
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are too. But this isn't always so, as you'll find out if you check the values in Fig. 24. The
value at the end of the first row was found by Richard Austin, and for a long time we couldn’t
find one with a bigger denominator. Then Steve Tschantz came up with the sequence on the
second row. Some positions aren’t even numbers at alll You'll learn about the values in the
third row in the next few chapters, and meet some more Childish Hackenbush positions in

Chapters 6 and 8.
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Figure 24. Childish Hackenbush Can Get Quite Playful!
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Some Harder Games and How to
Make Them Easier

Our life is frittered away by detail . . . . Simplify, simplify.
Henry David Thoreau, Walden.

Nim? Yes, yes, yes, let’s nim with all my heart.

John Byrom, The Nimmers, 27

Eh%}ﬂ |

Figure 1. A Well Advanced Game of Poker-Nim.

- |

Poker-Nim

This game is played with heaps of Poker-chips. Just as in ordinary Nim, either player may
reduce the size of any heap by removing some of the chips. But now we allow a player the
alternative move of increasing the size of some heap by adding to it some of the chips he
acquired in earlier moves. The two kinds of move are the only ones allowed.

Let’s suppose there are three heaps, of sizes 3, 4, 6 as in Fig. 1, and that the game has
been going on for some time, so that both players have accumulated substantial reserves of

53
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chips. It’s Left’s turn to move, and he moves to 2, 4, 6 since he remembers from Chapter 2
that this is a good move in ordinary Nim. But now Right adds 50 chips to the 4 heap, making
the position 2, 54, 6, which is well beyond those discussed in Chapter 2.

This seems somewhat disconcerting, especially since Right has plenty more chips at his
disposal, and doesn’t seem too scared of using them to complicate the position. What does
Left do? After a moment’s thought, he just removes the 50 chips Right has just added and
waits for Right's reply. If Right adds 1000 chips to one of the heaps, Left will remove them
and restore the position to 2, 4, 6 again. Sooner or later, Right must reduce one of the three
heaps (since otherwise he’ll run out of chips no matter how many he has), and then Left can
reply with the appropriate Nim-move.

So whoever can win a position in ordinary Nim can still win in Poker-Nim, no matter
how many chips his opponent has accumulated. He replies to the opponent’s reducing moves
just as he would in ordinary Nim, and reverses the effect of any increasing moves by using a
reducing move to restore the heap to the same size again. The new moves in Poker-Nim can
only postpone defeat, not avoid it indefinitely. Since the effect of any of the new moves can
be immediately reversed by the other player, we call them reversible moves..

Northcott’s Game

The same sort of thing happens in other games, often in better disguise. Northcott’s game is
played on a checkerboard which has one black piece and one white piece on each row, as in
Fig. 2. You may move any piece of your own color to another empty square in the same row,
provided you do not jump over your opponent’s piece in that row. If you can't move (because
all your pieces are trapped at the side of the board by your opponent’s), you lose.

o O

O
[

W ke O
[ J
O

[=>1
[ ]

O
O o
0 O

Figure 2. A Position in Northeott's Game.

This can seem an aimless game if you don’t see the point, and indeed it usually goes on
forever if it is played badly. But when you realize that it’s only Nim in disguise once more,
you’'ll soon be able to beat anybody pretty quickly. To the left of the board in Fig. 2 we have
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shown the numbers of spaces between the two pieces in each row. When someone moves, just
one of these numbers will be changed, and might be either increased or decreased, according
as the move was retreating or advancing. But just as in Poker-Nim. any moves increasing one
of the numbers can be reversed by the next player, and so are not much use.

Who wins in Fig. 27 We can see the zero-position 2, 4, 6 among the numbers shown, and
of course the two numbers 3 form another zero. Neglecting the two rows that are already 0,
the only other number is 5, and we maintain that the first player can win by moving so as to
reduce this 5 to 0. Whenever the other player enlarges some gap by retreating, the first player
should reduce it again by the same extent. In fact the winner should always advance on his
opponent., never retreat.

It should not be thought that the moves we advise here are the only good ones. For
example, from Fig. 2 instead of reducing 5 to 0, we could replace 6 by 3, 4 by 1 or even 3 by 6
in the second row (for White) or 0 by 5 in the last row (for Black). In fact it will help to avoid
revealing the strategy if you do not always reply to a retreating move by the corresponding
advance—for similar reasons occasional retreating moves might be desirable.

Bogus Nim-Heaps and the Mex Rule

Consider the impartial game
G = {0, %1, %2, %5, 6, %9 | %0, %1, %2, %5, %6, %9}

This is a new kind of Nim-heap from which either player can move to a heap of size 0, 1,
2,5, 6 or 9. In other words, we can regard it as a rather peculiar Nim-heap of size 3 (the first
missing number) from which, as well as the usual moves to heaps of sizes 0 or 1 or 2, we are
allowed to move to a heap of size 5 or 6 or 9. However, the Poker-Nim Argument shows that
this extra freedom is in fact of no use whatever. To be more precise, suppose some player has
a winning strategy in the game =3+ H + K+ ... . Then in the same circumstances he has one
in G+ H+ K + ... . When his strategy calls for a move in any of 3, H, K, ..., that move
is still available, and he need not use the new permitted moves from G to =5, #6 or 9. If his
opponent tries to do so, he can immediately reverse the effect of this move by moving back to
*3 (since 5, 6 and 9 are all greater than 3), and revert to the original strategy. So G can be
replaced by 3 without affecting either player’s chances.

The same argument shows that any game of the form

G = {*a,*b, =c, ... | *a, #b, *c, . ..},

in which the same numbers appear on both sides, is really a Nim-heap in disguise. For if m
is the least number from 0, 1, 2, 3, ... that does not appear among the numbers a, b, ¢, ..,
then either player can still make from G any of the moves to *0, =1, 2, ..., *(m—1) that he
could make from *m. If his opponent makes any other move from G, it must be to some #n
for which n > m, and can be reversed by moving back from #n to *m. So @ is really just a
bogus Nim-heap #m.
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We summarize:

If Left and Right have exactly the same options from G,
all of which are Nim-heaps *a, #b, *c, .. .,
then G can itself be regarded as a Nim-heap, *m,
where m is the least number 0 or 1 or 2 or ...
that is not among the numbers *a, #b, *c, ... .

THE MINIMAL-EXCLUDED (MEX) RULE

This minimal-excluded number is called the mex of the numbers a, b, ¢, ... .

The Sprague-Grundy Theory for Impartial Games

The above result enables us to show that every impartial game can be regarded as a bogus
Nim-heap. For suppose we have an impartial game

G={A,B,C,...| A,B,C,...}.

Then A, B, C, ... are simpler impartial games, and therefore we can suppose they have already
been shown to be equivalent to Nim-heaps #a, #b, ®c, ... . But in this case G can be thought
of as the Nim-heap #m defined above. This gives us

THE BOGUS NIM-HEAP PRINCIPLE

Every impartial game is just a bogus Nim-heap
(that is, a Nim-heap with reversible
moves added from some positions).
The Mex Rule gives the size of the heap for G as
the least possible number that is not the size of
any of the heaps corresponding to the options of G.

This principle was discovered independently by R. P. Sprague in 1936 and P. M. Grundy
in 1939, although they did not state it in quite this way. This means that provided we can
play the game of Nim, we can play any other impartial game given only a “dictionary” saying
which nimbers (i.e. Nim-heaps) correspond to the positions of that game. Here's a game
played with a White Knight that gives a simple example of this dictionary method.

The White Knight

The White Knight has, from any position on the chessboard, the moves shown in Fig. 3. You
may recall that he was in the habit of losing his belongings. Alice has kindly boxed them up
and the boxes now form the Nim-heap to the right of the figure. Now consider the game in
which you can either move the Knight to one of the four places shown or steal some of the
boxes. The game ends only when the Knight is on one of the four home squares and all the
boxes have gone.
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Figure 3. The White Knight and his Baggage.

The whole game is the result of adding a Nim-heap #6 to a game with only the Knight.
Table 1 shows which nimbers correspond to the game with the Knight in various positions.
Let’s find the value of the Knight on d7 as in Fig. 3, assuming we already know the values of
the four places he can move to. Figure 4 shows that these places can be thought of as bogus
Nim-heaps of sizes

0, 3, 0, 1 (mex = 2)

and so the present position corresponds to a bogus Nim-heap of size 2, value *2. So the good
move in Fig. 3 is to steal all but two of the boxes.
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Figure 4. What the White Knight Moves are Worth.
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1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20
a| 0 0= 1 0 0=1 %=1 0 0 =1 %1 0 0 %1 x1 0 0 %1 =1

o

b 0 0 =+2 1 0 0 =+1 =1 0 0 =1 «1 0 0 =1 =1 0 0 =1 =*1
c | *1 #2 %2 %2 3 *2 %2 %2 x3 %2 =2 #2 *3 %2 #2 2 =] x2 2
d | #1 %1 %2 %1 %4 %3 %2 %3 %3 %3 2 %3 *3 *3 £2 %3 23 £33 2

e 0 0 =3 =4 0 0 =1 =1 0 0 =1 1 0 0 =1 =1 0 0
f1 0 0 %2 3] 0 02 =1 0 0=1 %1 0 0=+1 %1 0 0
g | %1 %1 %2 #2] %] %2 %2 %2 %3 %2 %2 *2 #3 %2 %2 %2 %3

w1 ] #2 3| x]l 1 2 %1 x4 %3 %2 %3 *3 %3 %2 %3 %3

i 0 0 =3 23] 0 0 =3 =4 0 0 =1 1 0 0 =1 =1

0 0 =2 =3 0 0 =2 =3 0 0 %2 %1 0 0 =1 =1
k| #1 %1 %2 #2| %1 %1 %2 %21 %2 %2 %2 %3 %2

| %1 %1 %2 #3| %1 %1 %2 =3|%1 %1 %2 x1
m| 0 0 =3 3] 0 0 =3 %3] 0 0

n| 0 0 %2 %3] 0 0 %2 %3
o | %1 %=1 %2 *2| %1 =1

p | *1 %1 %2 %3

Table 1. Nimbers for the White Knight.

Adding Nimbers

We saw in Chapter 2 that a Nim-heap of size 2 together with one of size 3 is equivalent to one
of size 1. We now see that this was no accident, for the sum of any two Nim-heaps *a and b
is an impartial game, and so equivalent to some other Nim-heap #¢. The number ¢ is called
the nim-sum of a and b, and written a £ b. How can we work out nim-sums in general?

The options from xa + *b are all the positions of the form *a’ 4 *b or *a + *b' in which a'
denotes any number (from 0, 1, 2, ...) less than a, and b’ any number (from 0, 1, 2, ... again)
less than b. So a f b is the least number 0, 1, 2, ... not of either of the forms

a fb, afb (a<a b <b)

Table 2 was computed using this rule. For example the entry 6 F 3 was computed as follows.
The earlier entries 3, 2, 1, 0, 7, 6 in column 3 correspond to the options *6' + 3 (where 6'
means one of 0, 1, 2, 3, 4, 5) and the earlier entries 6, 7, 4 in row 6 correspond to options
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01 2 3 4 5 6 7 8 9101112 13 14 15
103 2 5 4 7 6 9 8111013 1215 14
23 016 7 4 51011 8 91415 1213
321 07 6 5 41110 9 815 14 13 12
4 5 6 7 01 2 312131415 8 91011
5 4 7T 6 1 0 3 213121514 9 811 10
6 7 4 5 2 3 0 1141512131011 8 9
7 6 5 4 3 2 1 0151413121110 9 8
8 9101112131415 0 1 2 3 4 5 6 7
9 8111013121514 1 0 3 9 4 7 6
1011 8 914151213 2 3 0 1 6 7 4 5
1110 9 815141312 3 2 1 0 7 6 5 4
12131415 8 91011 4 5 6 01 2 3
13121514 9 81110 5 4 7 6 1 0 3 2
141512131011 8 9 6 7 4 5 2 3 0 1
151413121110 9 8 7 6 5 4 3 2 1 0

Table 2. A Nim-Addition Table.

#6 + 3" (3’ means 0, 1 or 2). The least number not observed earlier in either row or column
is 5,80 6 £3 =5, i.e. 6+ *3 = 5. It might help you to follow how the table is computed if
you look at the game in which our White Knight is replaced by a White Rook which can only
move North or West.

You'll find a general Nim-Addition Rule in the Extras, and will have many opportunities
to apply it; for example, in Chapters 4, 12, 14 and 15.

Wyt Queens

In the game of Wyt Queens any number of Queens can be on the same square and each player,
when it is her turn to move, can move any single Queen an arbitrary distance North, West or
North-West as indicated, even jumping over other Queens.

Because the Queens move independently, we can regard the whole game as the sum of
smaller ones with just one Queen. The various Queens on the board will therefore correspond
to nim-heaps #a, *b, *¢, ... which we can add using the Nim-Addition Rule. Try computing
the nimber dictionary for this game—when you get tired you can look in the Extras for more
information.

The one-Queen game is a transformation of Wythoff’s Game (1905) played with two
heaps in which the move is to reduce either heap by eny amount, or both heaps by the same
amount. We'll meet Wyt Queens again in Chapters 12 and 13.
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Figure 5. How the Wyt Queens Move.

Reversible Moves in General Games

What does it mean for some move to be reversible in an arbitrary game G7 We shall suppose
that Right’s move to D is reversible in the game

G={AB,C,... | D, E F, . . .}

This will mean that there is some move for Left from D to a left option DL which is at
least as good for Left as G was, i.e. DY > G. Then if ever Right moves from G to D, Left can
at least reverse the effect by moving back from D to D, and might even improve his position
by doing so. We shall suppose that DL is the game

DY ={U VW, .. | XY, Z .}
so that G looks something like Fig. 6(a).
Now whenever Right plays from G to D, Left will reverse from D to DE, from which Right
can move to any of X, Y, Z, ... . So we might as well shorten G by omitting Right’s move to
D and letting him move directly to X or Y or Z or ... . In this way we get the game

H={AB,C,... | XY Z . . EF .},
shown in Fig. 6(b), which should have the same value as G.




h Reversible Moves in General Games 61
DL
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Figure 6. Bypassing a Reversible Move.

We can easily test this by playing the game G — H, that is
{A,B,C,...|D,E,F J3+{-X,-Y,-Z ..., -E,-F,. |-—A -B,-C,...},

shown in Fig. 7, and verifying that there is no good move for either player as follows.
Obviously the moves from G to A, B, C, ... or E, F', ... are exactly countered by moves
to their negatives from — H, and conversely, so that the only hopeful moves are those for Left

from —H to —X or =Y or —Z or ..., and that for Right from G to D.

Y
N2,
\\// N\

Figure 7. A Zero Game.
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Left’s hopes are soon dashed. His move from —H to —X, say, leaves the total position
G — X, worse for him than DY — X, which Right can win by moving from D® to X. There
remains Right’s move from G to D, which Left will reverse to D¥, leaving the total position
DY — H, namely:

{U,V,W,... | XYz . . y+{-X,-Y—-Z . . —-E-F .. | —-A —-B,-C,...}.
Now Right dare not move from D¥ to X or Y or Z or . .., since Left can counter by moving
from —H to the corresponding one of —X or —Y or —Z or ... . So Right’s only hope is to
move from —H, leaving the total position D* — A or D¥ — B or D* — C or ... . But since

DT > G these are at least as bad for Right as G — A, G — B, G — C, ..., which Left can win
by moving in G to the appropriate one of A or Bor C or ... .

Since we have now dealt with all possible first moves, G — H is a zero game, and we
can afford to replace G by H in any of our calculations, which will often he a very valuahle
simplification. We summarize:

If any Right option D of G has itself a Left option D¥ > G, then
it will not affect the value of GG if we replace D as a Right option

of G by all the Right options X, Y, Z, ... of that D%,
BYPASSING RIGHT'S REVERSIBLE MOVE

Of course a move by Left can also be reversible:

If any Left option €' of G has itself a Right option C® < G, then
it will not affect the value of GG if we replace C' as a Left option
by the list of all Left options of that C'F.

BYPASSING LEFT’S REVERSIBLE MOVE

Deleting Dominated Options

Now there is another kind of simplification we've already mentioned, which it would be wise
to discuss more precisely here. In the game

G ={A,B,C,...| D,E,F,...},

if A < B we say that 4 is dominated by B, and if D < E. that F is dominated by D. In
other words, given two possible moves for the same player, one dominates the other if it is at
least as good for the person making it. Then we can simplify by omitting dominated moves
(provided we retain the moves that dominate them). In the case discussed, this will mean that
G has the same value as the game

K ={B,C,...| D,F,..}.

And indeed, G — K is a zero game, since the moves from G to A or E are countered by those
from —K to —B or —D, and all other moves in either component are countered by moves to
their negatives from the other.
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It won't affect the value of G
if we delete dominated options
but retain the options that dominated them.

DELETING DOMINATED OPTIONS

But remember that reversible options are not deleted, but bypassed, i.e., replaced by the
list of options, for the appropriate player, from the position his opponent reverses to.

Toads-and-Frogs with Ups and Downs

PN
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Figure 8. Anatomy of Toads-and-Frogs.
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We considered a 4-place version of this game in Chapter 1. The 5-place version we now
consider displays more interesting behavior. In any 5-place lane Left may move one of his
toads one space right, onto an empty square, or jump over just one frog onto an empty square
immediately beyond. Right's moves are similar, moving his frogs leftwards. Figure 8 shows
the complete play from the initial position in which the two toads are separated by just one
space from two frogs. We already know how to evaluate, working upwards, all positions except
the top three.

The next position to be considered is

TOTFF = {OTTFF | TFTOF } = {0 | *}.

Since 0 is a loss for the player to move from it, Left can win this game by moving to 0, and
Right’s move to * does not win since Left will reply to 0. So {0 | x} is a positive game. But
since # is less than each of the numbers

2, 1,
{0 | #} is less than or equal to each of

{ol25,{0 1}, {0] 4} {0 4}, .

1‘ 1 1 1

So we have here a positive value less 2I;ha,n evzry posit?ve number. Since we have not seen
such a thing before, we cannot hope to simplify it, and we therefore need a new name. 7,
pronounced “up”.

Similarly, the position TTFOF, obtained by interchanging the roles of Left and Right, has

the value {* | 0} which is negative, but greater than any negative number. Since = is its own

] L
==

that is, each of

negative, {* | 0} is the negative of {0 | #} and we call it |, pronounced “down”. By the end
of the book we shall have had many ups and downs!

So the starting position of Fig. 8 has value

TTOFF = {TOTFF | TTFOF} = {1|/}.

Do we need a new name for this? Let’s first see if we can simplify it. Since each player has
only one option, no move dominates another, so we next look for reversible moves. Is Right's
move to | reversible from the game G = {T|J,}? This happens only if there is some Left option
¥ > @. Since | = {* | 0} we are asking if « > G, ie. if G — x < 0. Has Left a winning move
from

G—#:{'[‘|J,}+{0|0} ?

His move from # to 0 is parried by Right’s reply from G to |, and his move from G to T is
countered by Right’s response from 1 to *, which leaves the total value * + % = 0. So indeed if
Left starts Right wins, showing that G — % < 0. This means that Right can bypass his move
to | by moving directly from G to [“F= «® = 0, and shows that G = {1‘| 0}. In this Left can
also bypass his move so that G simplifies further to {0 | 0} = .

{14} = {1] 0} = {0 ][4} = {0] 0} = «

We could otherwise have seen that G = * by observing that Right also had no winning move
from G — *. However, for a more complicated ¢ we can ask which moves are reversible even
before we have guessed the simplest form of G.
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Game Tracking and ldentification

Much of this book is about finding out who wins various partizan games from arbitrary posi-
tions. Partizan games, we recall from the Extras to Chapter 1, are those in which the options
available to the two players are not necessarily the same. For example, to find the winner in
the 9-lane H-place Toads-and-Frogs position of Fig. 9, we must work with sums of terms whose
values may be 1, |, *, or various numbers. When stalking other game we shall need to know
how to add even more general values and find when the result is positive, negative, zero or
fuzzy. We learned how to add numbers at school and we can add any small enough nimbers
using our nim-addition table (Table 2). We also know that z + % = {x | a} = zx for any
number . So perhaps the simplest pair of values we have not yet added are T and . We shall
call their sum T+. Is it perhaps equal to {T|T} ?

Figure 9. Toads and Frogs make easy Big Game.

We can always test for equality of two values by seeing if their difference is a win for the
second player. Is this true of the difference game

1 *
{tlt}= = {113+ {= [ 0} + {0 | 0}
do you think? No! If Left makes his move to # from the component |, the total value becomes
{T|T} ook = {T|T} which is clearly positive, since Left can win and Right can’t. In fact it
turns out that Right has no good move from {’]‘|T}— T so that {1‘|1‘} is strictly greater than

T,
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We shall find a correct formula for 1#. From the definition of the sum of two games we
have, by considering the moves of Left and Right in the two components,

=T +k={04%1+0|*+%71+0}={x1 01}
using the equation # + * = (. We can simplify this to
o= {1, = | 0}

since Right’s option 1 was dominated by his other option, 0. Neither of Left’s options dominates
the other, for from their difference 1 — % =1 + %, Left can win by moving to 1 + 0 and Right
by moving to # + =,

However, Left’s option 7 is reversible by Right through 1= #, for plainly * <1%. So we
can bypass T by allowing Left to move directly to 15 = %X = 0, without affecting the value
of the game. We therefore have the equation

P =1+ = {0, | 0}

and similarly its negative

Je=1++={0]0x}

We have put these in boxes because they are in fact the simplest forms. They have no
dominated or reversible options.

VWhat Are Flowers Worth?

We can now evaluate some simple Hackenbush Hotchpotch positions:

> =10%0}="1x

A 1
= 4 _1_ > = 10100 ]=|»

- - .- ------------------ - .a'.

A prettier position is the flower of Fig. 5(a) in Chapter 2. More generally we can consider
such flowers with any numbers of red and blue petals, as in Fig. 10(a). Which player will win
the sum of two flowers of this kind?




A Gallimaufry of Games

o 4L

Figure 10. Two Flower Shows Ready for Judging.
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Here it is easy to see that whoever first chops one of the two green stalks will lose, for his
opponent will chop the other. So this kind of game reduces to “She-Loves-Me, She-Loves-Me-
Not”, this time played on the red and blue colored petals. Whichever of Left and Right is
first unable to remove a petal of his color will lose, since his only other options are the stalks.
So in a two-flower position the player having the larger number of petals of his own color will
win, except that if there are as many red as blue petals in all, the second player will win, for
his opponent must take the first petal and hence the first stalk.

This argument proves that Fig. 10(b) is a zero game, for each player has three petals in
all, and it establishes that the value of the flower of Fig. 5(a) in Chapter 2 is T + *, since the
one-petal flower in Fig. 10(b) has the value | + % (the petal can be uncurled without affecting

play, like a snake’s head).

A Gallimaufry of Games

Figure 11. A Gallimaufry of Games.
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Left and Right will soon return to the table shown in Fig. 11, on which they have been
playing the sum of three games, namely Hackenbush Hotchpotch, Col, and Toads-and-Frogs.
You can be sure that they will be unable to agree whose turn it was to move. Will it matter?

Who Wins Sums of Ups, Downs, Stars, and Numbers?

A 5-place Toads-and-Frogs position with any number of lanes has a value which is the sum of
terms from
0, 1, =1, £ -1 & 1 and |

- 2 2
To work out who wins we need rules telling us when such a sum is positive, negative, zero or
fuzzy. Using the equations # 4+ * = 0, and | = — 1, any such sum reduces to a form x + n.t or

x + n.T +#*, where x is a number and n is an integer which may bhe positive, negative or zero.
The rules (valid for arbitrary numbers z) are:

If # is any number, then x + n.7 is
positive, if x is positive, or z is zero and n > 1;
negative, if x is negative, or x is zero and n < —1;
and zero, only if  and n are both zero.

If = is any number, then = 4+ n.f + = is
positive, if x is positive, or x is zero and n > 2;
negative, if x is negative, or x is zero and n < —2;
and fuzzy, if x is zero and n = —1, 0 or 1.

In these rules n.1 denotes the sum of n copies of T or —n copies of |. We usually abbreviate
21 to 1, pronounced “double-up”, and write {1+ for {} + *, etc.

The proofs require only the observations we have already made that = is fuzzy and 1 positive
and that both are dominated by any positive number, together with the observations that 1=
is fuzzy but {* =1 + T + = is positive.

To see that 1+ is fuzzy we need only observe that from the equivalent form {0, = | 0} each
player has a winning move to 0. From

1 t *
e ={0| =} + {0 |} + {0 0}

Right’s only options are to replace a component T by #, leaving a total of T+ % +% =7, or
to replace = by 0, leaving {}. Since both of these are positive, Right has no winning option, so
that {}* > 0. Since {} is positive it cannot equal *, so f must be strictly positive. In fact Left
wins by replacing = by 0, leaving the positive remainder 1.

A Closer Look at the Stars

We have now asquired a better idea of how fuzzy * really is, for we have shown that it is less
than {t =1 + 1, greater than | =] + |, but confused with each of |, 0, *. The cloud (Fig. 12)
under which it is hiding, although it covers only one number, 0, can now be seen to have a
radius of at least 7.
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Figure 12. Star, Seen Through a Glass, Darkly.

UI_.,_
M

We can examine other small games using similar devices. Figure 13(a) shows 1x, obtained

by adding 1 to Fig. 12. Figure 13(b) will serve for any *n with n > 2.

{a)

€507

(b)

Figure 13. The Whereabouts of 1% and of #n (n > 2).

The Values {1|t} and {0 |1}

>

In more complicated positions, 1T and | frequently arise as options. For example, we have
already seen that {T|Y} = {T| 0} = {0 |?} = *, and enquired about the position {”‘|T}

The value {0

1} arises from the 7-place Toads-and-Frogs position of Fig. 14, in which the

four positions marked 0 may be checked to be second player wins. How big are {T|*} and

{01}
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rlefrle] Vrle) {r[E[TIFITIF] |

Figure 14. Up Among the Toads and Frogs.

We first examine {"|*} = X, say. Right’s option of 1 will only be reversible if there is some
1L > X, i.e. if 0 > X, which we know to be false. As a Left option, 1 will be reversible if there
is some TR < X, ie. if #+ < X, which is true since

c={0]0y < {11} = X.

So we can bypass, replacing T by * = 0, to obtain X = {0 |"} the value of Fig. 14, proving
that our two questions were the same. Since 0 has no Right option there will be no further

simplification.

Is0 > X? No! = Sono simplification.

oy

Is# < X7
Yes!
So X={0fT}

Figure 15. Searching for Reversible Moves.
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For a general X, each player must ask if to any one of his opponent’s options from X he
has a response Y which is at least as good for him as X was. If so, he replaces that option by
the list of all his opponent’s options from Y. Figure 15 shows a graphical way of asking these
questions that we have often found useful. The arrows are curved so as to remind us which
players make which of the moves we hope to bypass.

The Upstart Equality

How big is X = {0 |’I‘} on our microscopic scale? It is certainly less than 471 (the sum of four
copies of 1), since in the difference X +4.}, Right can move from X to 1 at his first opportunity
and there will be at least two | components, even after cancelling T with |. By a similar move
Right can win = + 3. | if he moves first. However, Left can also win this moving first if he
replaces | by *, leaving

x ' 8
Xt 4r = {0 [t} + {x | 0} + {x] 0} + {0 | 0}

To see this, recall that we already know that X, alias {T|T}, is strictly greater than T, so
Left wins if Right replaces a | by 0, while if Right replaces * by 0, Left can win by replacing
a | by #. Right’s only other option is from X to 1 leaving a fuzzy total of |=.

The argument has shown that X is confused with 3.1, and so with {+ and 1, since even from
X+ | Left has a winning move (to X + =). We now know all order relations between X and
values of the form n.7. How does it compare with values n.1 +* 7 Since it is greater than 1=
we compare it with . In the difference X+ |l#, displayed above, we have already dismissed
all Right’s options. However, Left’s option from X leaves the negative total Il *; his option
from | leaves the fuzzy total X + #+ | +% = X+ |, while that from * leaves another fuzzy
total X4 |}, so all Left’s options can be dismissed too! This gives us the remarkable identity

Ot} =141 4= =1«

The theory of partizan games is notable for the occurrence of such surprising identities.
Although the pattern in Table 3 extends naturally in both directions, some of the middle entries
are far from immediately obvious. In the last column #n denotes the nimber {0, , ..., *(n—1) |
0,%,...,%(n—1)} for some n > 2 and m = n J 1; T+n denotes 1 + = n, etc.

In particular, these relationships allow us to obtain a tractable expression for Toads-and-
Frogs positions of the form

(TF)*TO(TF)"F
Omar will already notice that the Toad move gives a position of value 0; our less assiduous
readers will find that this is a consequence of a more general result in Chapter 5. It follows
that
(TF)*TO(TF)"F = {0 |(TF)"+1TD(TF)”_1F}

which equals n.1 + (n+1).% by induction on n (and doesn’t depend on z).
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3l={Ux |0} 34 +x={{| 0} 3. + xn={{xm | 0}
4 ={4x |0} Y= ={l] 0} Jen  ={l=m | 0}
b ={x|0} bx ={0]0,%} b ={=m | 0}

0={]|} + ={0]0}

1 ={0| %} tx ={0,% | 0} ten ={0 | *m}

T ={0 [T} = ={0|T} Lsn ={0 |t=m}
34={0 |f=} 31 +*+={0 |1} 31+ *n={0 |f=m}

Table 3. Simplest Forms for Ups and Stars.

Gift Horses

The following principle often makes it easy to check one’s guess about the value of a position:

It does not affect the value of G
if we add a new Left option H provided H < G,
or a new right option H provided H I> G

THE GIFT HORSE PRINCIPLE

The new options H or H are the gift horses; although they may appear to be useful
presents, the recipient who looks them in the mouth will find that they have no teeth. For in
the difference game

{GF H | GRy+ {-GR | -G}
(-G)

if H is a gift horse, Left will find no joy in moving to the difference H — G <1 0, and the other
options for Left and Right cancel each other as in the Tweedledum and Tweedledee Argument.

Thus we know that {0 |T} = fp* is confused with 1, so 1 will make a fine gift horse for
Left: {0 |T} = {0,T|’I‘}. Since Left’s old option 0 becomes dominated in the new form, we can
deduce {0 [t} = {t|1} more simply than we did before. In fact we have {} ||} and fp* || 3.1
and so by a similar argument

fe = {0 [t} = {1]t} = {n]1} = {34]1}

On the other hand 1+ < 4.1, so the latter would not be a mere gift horse for Left, and indeed
{4.1‘|T} is strictly greater than f}+.




Extras

The Nim-Addition Rule in Several Variations

If you think about the way the nim-addition table (Table 2) extends, you’'ll see that

if @ and b are less than 2%,
then so is a £ b, and
ok Xoq =2k 4 q

From this you can deduce that

the nim-sum of a number of different powers of 2
is their ordinary sum, and, of course,
the nim-sum of two equal numbers is zera.

THE BASICS OF NIM-ADDITION

You can use these two bhasic properties to find the nim-sum of any collection of numbers by
writing each of them as a sum of distinct powers of 2 and then cancelling repetitions in pairs.
For example,

5i3=(4+1) X2+ =affF2¥1=4F2=4+2=6,

11322533 =(8+2+1)F(16+4+2)F(32+F) =8+ 16+4+ 32=60.

These could also be written in terms of nimbers,
#h 4+ %3 = 6 and * 11 + *22 + %33 = %60,
and you should get used to working in either notation:
#9 + 25 + %49 = (xf + #I) + (x16+ B + #]) + (*32 + # W6+ *1) = 32 + x1 = *33.

This way of calculating shows you that

the nim-sum is less than or equal to the ordinary sum,
and they differ by an even number,

SEE HOW THE SUMS COMPARE AND HAVE COMMON PARITY

The textbooks usually say “write the numbers in binary and add without carrying” which
comes to the same thing:
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3216 8 4 21 3216 8 4 2 1

4 21 11 = 1011 9= 1001
=101 22 = 10110 25 = 11001
3= 11 33=100001 49=110001
6=1120 60=1 11100 33=100001

But since you don’t want to be scribbling on bits of paper, vou should use our way, which
makes it easy to do in your head, and is less prone to error.

Wyt Queens and Wythoff's Game

Table 4 gives the nimbers for various possible positions of Wyt Queens.

o 1 2 3 4 5 6 7 & 910 11 12 13 14 15 16 17
0 0 =1 =2 %3 #4 *5| 6 =7 =8| #9 10 =11k12 13 #1415 16 =17

1 #1 %2 O #4 *5  *3| *7 =8 =0Gkl0 11 *9pl13 *14 #1216 =17 *15
2 #2 0 =1| %5 #3 #4| %8 =6 =TE11 =9 =10k14 12 +13 %17 %15 =16

3 #3 #4  #=H| #6 #2 0] 1 *9 #1012 *8 *Tk1d +11 #16k18 =14 =13
4 #4  «h =3 %2 #7  #6| %9 0 =1 %8 %13 =12k11 %16 #1510 %19 =18
D £ #3 #=4] 0 #6 #8k10 *1  =2| =7 %12 *14| %9 £15 #1713 18 =11

#6 =7 =8| %1 #9 %10| *3 =4 ==5HxE13 0 *2k16 17 #18&12 20 =14
#7 *8 6] %9 0 #1| 4 *5 =314 %15 #1317 +2 £10k19 £21 =12
#8  #0  xTRI0 %1  *2| %5 =3  *4p15 =16 =1TKIS8 0 *9xl1d *12 =19

o e =1 o

#9 %10 #1112 #8  #7Th13 #14 #1516 *17 *6k19 +5 *1| 0 =2 =3
10 | =10 =11 =9 8 %13 *12| 0 #1565 #1617 =14 =18 *7 +6 #2| =3 =1 =4
11 | #11 #9 =10] *7 %12 *14| %2 %13 17| =6 =18 *15| *8 %19 *20k21 =4 =b

Table 4. Nimbers for Wyt Queens.

Most of the entries are chaotic, but Wythoff’s Difference Rule is that the zero entries have
coordinates
(0,0), (1,2), (3,5), (4,7, (6,10), (813), (9,15), (11,18),
with differences
0, 1, 2, 3, 4, 5, 6, 7,
the first number in every pair being the smallest number that hasn't yet appeared. He also
showed that the nth pair is
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(In7], [n72]) n=0.12...

where 7 is the golden number

[
+
an

Answers to Figures 8, 9, and 11.

Now that we know that {0 | +} =1, {x | 0} = and {|}} = * we can fill in the values of the
positions in the first two rows of Fig. 8. Then in the easy big game of Toads-and-Frogs shown
in Fig. 9, the values of the 9 lanes are %, 0, T, %, #, —1, *, %, and T, whose total is f}*, a
win for Toads. But if Left has to play first, he must be careful and move in one of the star
lanes, either in the starting position of lanes 1 or 7 to make the value 3.7, or in the middle
lane, making the value 1.

In our Gallimaufry of Games (Fig. 11) the Hackenbush position has the value 1%, the Col
position 1%, and the Toads-and-Frogs position —1. In their sum, 1 and —1 cancel, as do the
two stars, leaving simply 1. This is a win for Left, no matter who starts.

Toad Versus Frog

A special case of Toads-and-Frogs which we can analyze completely is when each lane contains
just one toad and one frog. After some moves we might find that the toad confronts the frog,
so that either could jump over the other into an empty space just beyond. We then have

' ’ |
STy DT i
a + 1 spaces [ i) | b+ spaces | —
= J
(i
| S i
4 + 2 spaces ‘ o i f b spaces a spaces b+ 2 spdces
L a Spac %@ ’la‘ ap p

—{b-a 20b-a+2}

since after either jump is made we can see exactly how many moves each creature has left to
make. So for such positions the value is {d — 2 | d + 2} where d is the difference

(number of spaces to right of frog) — (number of spaces to left of toad).
This rule also works if either of these parentheses is 0. In the general position before con-
frontation there will be ¢ spaces between the two creatures and a move by either player will
shorten the gap to ¢ — 1 and decrease d by 1, if a toad move, increase it by 1 if a frog move.
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d ... -4 -3 -2 -1 0 1 2 3 4
c=0 ... -3 -2 -1 0 0 0 1 2 3
c=1 ... -3 -2 -1 -3 % % 1 2 3
c=2 ... -3 -2 -1 0 0 0 1 2 3
c=3 -3 -2 -1 -3 * 3 1 2 3

Table 5. Toad Approaching Frog.

So in Table 5 the Left and Right options for each entry are the entries left and right of it in
the row above, for ¢ =1, 2, 3, ..., while for ¢ = 0 they are d — 2 and d + 2.

Using this rule to compute the entries it is easy to see that the rows continue to alternate.
In the position of Fig. 16 the values of the lanes are, in order, 1, %, — %, 0 and —%, which add
to #, so that either player can win by moving in the second lane. Can the reader find Left’s
only other winning move?

[ S
R | e
LRGT | 4
Pinid o E':-‘_
i e
= o
e S
m-_—;,.' , RN
S A

&
N

1 i

Figure 16. A 5-lane Game of Toad versus Frog.

Two Theorems on Simplifying Games

We prove that by omitting all dominated options and bypassing reversible ones we really do
obtain the absolutely simplest form of any game with finitely many positions. For suppose
that G and H are games which have the same value, but that neither of them has any positions
with dominated or reversible options. Then we shall prove that for every option of G there is
an equal option of H, for the same player, and vice versa, so that G and H are not only equal
in value, but identical in form.

Since the difference game

G-H={G"|G*}y+{-H" | -H"}
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is a second player win, Right must have some winning response

G'"-H<0 o GF-H"<0
to any of Left’s options G¥ — H. The first case would imply G® < H = G, making G* a
reversible move from G, so that for every G*° there must be some H*® > G%°. by a similar
argument there must be some GLt > H%L0(> G'10) and since there are no dominated options,
in fact G¥* = H%*0 = G%o. The argument works equally well if we interchange G with H or
Left with Right.

Our second theorem is that from the simplest form one can obtain any other form by adding
gift horses and then perhaps deleting some dominated options. For if G = {GF | GT} is the
simplest form of some game H = {HE | HE}, we can prove as before that Right’s winning
move from G* — H must be to some game G* — H* < (0 (rather than some GLF — H < 0).

This proves that for each G there is some HL > GL, and similarly for each G, some
HE < GE. Also for every HE we must have HL <) H and for every HE HE |~ H since
neither player can have a winning move from H — H = (. The last sentence shows that the
options of H will serve as gift horses for (G, so that

G ={G".H" | G" H"}

by the Gift Horse Principle. In this form each option G* or G¥ is dominated by some H or
H* and so may be omitted.

Berlekamp's Rule for Hackenbush Strings

Here's how to find a Hackenbush string for a given number. The color of the edge which
touches the ground is taken from the sign of the number, so that positive numbers start with
a blue edge and negative with a red one. We’ll just do the positive case.

Write the fractional part in binary: thus

32 =3-10L
Then, to find the Hackenbush string, 1'epl§ce the integer part by a string of L’s, the point by
LR
and convert 1's and 0’s after the point into L’s and R'’s, but omitting the final digit, 1:
33 = 3 : 1 0 1
L L L LR L R
Of course,
-—3% = R R R RL R L.

The Rule actually works even for real numbers which don’t terminate, except that there is
then no final 1 to be omitted. E.g.,

=0 - 0 1 0 1 0 1
LR R L R L R L

W=

Of course, the rule can be reversed to convert any Blue-Red Hackenbush string to a num-
ber. For example
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We write this as a string of L’s and R’s and replace the first pair of adjacent branches of
different colors by a point, convert subsequent branches by the rule:
a color agreeing with the grounded color becomes 1,
a color opposite to the grounded color becomes 0,
and append an extra 1 bit at the end. Thus
R R R R R L L R R L R L
—_—— =~

becomes
—4 - 0 1 1 0 1 0 1
ie.

1
4

1
8

1 1y _ 453
+ 3t ) = das

—(4 + +

Or you may prefer Thea van Roode’s recipe, giving each edge a value 1 (or —1) until there is
a color change, then halving each value and changing sign with the color, e.g.,

; ; 1 1 1 1 1 1 1 53
-1 -1-1-1 "'1+2 t7 78 16 ta Tm tmsT 128

In certain applications when one wishes to store numbers whose distribution is known
a priori, this Hackenbush number system may have significant advantages over the more
conventional computer representations of fixed or floating point numbers.
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4.
Taking and Breaking

He's up to these grand games, but one of these days I'll loore him on to skittles — and astonish him.

Henry J. Byron, Our Boys.

I'll live by Nym and Nym shall live by me; — is not this just? — for I shall sutler be.
William Shakespeare, King Henry V, 1L, 1.

Kayles

In Fig. 1 we see Left and Right playing the old English game of Kayles. They have become so
skilful at this game that they can bowl so as to take out any desired pin or any two adjacent
ones. The game is played with light and well-spaced pins so that the world champion can do
no better; it is impossible to knock down two pins separated by a greater distance. Whoever
is unable to knock down a pin loses.

) &0

Figure 1. Playing Kayles.
81
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How shall we analyze this game? In the general position there are several rows of adjacent
pins (e.g. rows of lengths 1, 7 and 3 in Fig. 1). Each move affects just one of these rows, of
length n, say, and replaces it by two rows, whose lengths @ = 0 and b > 0 add to n—1 or n—2.
Rows of length 0 may be ignored. The possible moves from a row K7 of length 7 are to:

Kg, Ki+ Ky, K4+ Ks, Ki+ Kj,
K{,._. K4+ K]_._. K:;-I—Kg.

We can therefore play the same game on a table top with heaps of beans: each player,
when it is his turn to move, may take 1 or 2 heans from a heap, and, if he likes, split what
is left of that heap into two smaller heaps. We shall analyze Kayles in this form later in the
chapter, and discover that Right, bowling in Fig. 1, is in a desperate situation.

Kayles was introduced by Dudeney and also by Sam Loyd, who called it Rip Van Winkle's
Game.

Games With Heaps

Consider any game played with a number of heaps in which each move affects just one of the
heaps on the table, and in which exactly the same moves are available to each player. Any
position in such a game is therefore the sum of its single heap positions, so the game is solved
when we know the value of a heap of n beans for every n. Moreover, since the games are
impartial, each such value is a Nim-heap, »m. In this chapter we'll usually omit the stars, so
if heaps of sizes 0, 1, 2, 3, ... have values xa, *b, *c, =d, ... we shall say that the game has the
nim-sequence
abed. ..

(sometimes we omit the decimal point) and refer to
G0)=a  G)=b  G@)=c  G(3)=d

as the (nim)-values. Using the information contained in the nim-sequence, we can analyze
any position.
The nim-value of a sum of heaps of sizes

is the nim-sum

Gi) FGU) ¥ G(k) F -

and each nim-value, G(n), is computed as the least one of 0, 1, 2, 3, ... that is not the nim-value
of any option from a heap of size n. As in Chapter 3 we shall call the least number (from 0,
1, 2, 3, ...) which is missing from a set {x,y, z,...} the mex (minimal excluded number) of
that set. Thus

mex(0,1,3,7) = 2, mex(2,4,5) = 0
and the mex of the empty set is 0.
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P-Positions and A-Positions
Impartial games can only have two outcome classes which we call

P-positions (Previous player winning), and
N-positions (Next player winning).

In this chapter we’ll frequently be working with nimbers, so you'll need to know that

a value of 0 indicates a P-position, while
values #,#2,%3, ... indicate N -positions.

No other value is possible for an impartial game. But remember that if you're going to add
up vour games, you'll need to know the exact value, and not just the outcome class, of each
component.

Subtraction Games

We might modify the game of Nim by requiring that in any move the number of heans taken
is at most three. This will mean that for the nim-values we have

G(n) =mex(G(n—1),G(n—2,G(n—3))

so that the nim-sequence is

S

and a single heap is a P-position (previous player winning) just if its size is a multiple of 4.
We could instead allow a heap to be reduced by any number up to k, when the nim-sequence

would be
n=0 12 ... k1% k+1 k+2 ... 2k 2k+1 2k+4+2 2k43 ...
.1

Gn)=0.12...k-1k 0 1 ... k-1 k 0 1

and a single heap would be a P-position just if its size were a multiple of k+1.

These results are well known and easily discovered so that it might be wise to play a game
whaose theory is less obvious. For example the game in which a heap may be reduced only by
taking 2, 5 or 6 beans from it. In this case

G(n) =mex(G(n—2),G(n—5,G(n—6))

and the nim-sequence is found to be
n=0 123456789101112131415161718...
Gm)=0.011021302100110213..

where the dots indicate that the first eleven values repeat indefinitely, so a single heap is a
‘P-position only if its size is congruent to 0, 1, 4 or 8, modulo 11. But of course we can also
analyze positions with arbitrarily many heaps. Let us find all the winning moves from the
position with three heaps of sizes

5 7,9 values 2,3, 2
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In Nim, the winning moves from the position
2,3, 2

1.3, 2 or 2,02 or 2,3, L
So by subtracting 2, 5 or 6 we must achieve a change from

are to

the 5-heap to one of value 1, that is a 3-heap (5 — 2 = 3),
or the 7-heap to one of value 0, that is a 1-heap (7 — 6 = 1),
or the 9-heap to one of value 1, that is a 3-heap (9 — 6 = 3).

More generally, for any subtraction set {s;,s2,53,...} we can define the corresponding
subtraction game S(s;,s2,83,...) in which a heap may be reduced only by one of the
numbers sy, 89,53.... . Table 1 gives the nim-sequences for some of these games.

For the subtraction game S(2,5, 6) we find that G(n) is never equal to G(n—9), so the game
S(2,5,6,9) has the same nim-sequence since adjoining G(n—9) never alters the mex. More
generally, if for the subtraction set {sy, s2, ..., si} we find another number s with the property
that G(n) is never equal to G(n—9) we can adjoin s to the subtraction set without affecting
the nim-sequence. Such optional extras are shown in parentheses in Table 1 which therefore
displays the nim-sequences for all cases with numbers up to 7.

Table 1. Nim-Sequences for Subtraction Games.

Subtraction set (with optional extras)  nim-sequence period
1(357911...) 0io1...
2(61014 18 ...) 001i0011. .. 4
1245781011 ...) 012012... 3
3(9152127..) 000111000111. .. 6
23(7812131718...) 0011200112... 5
1235679101113 ...) 01230123. .. 4
4(12 20 28 36 ...) 0000111100001111. .. 8
14(6911141619...) 0101201012. ... 5
24389101415 16...) 001122001122. .. 6
34(10 11 17 18 24 25 ...} 00011120001112. .. 7
134(681011131517...) 01012320101232. .. 7
1234678911121314...) (123401234. .. 5
5(15 25 35 45 ...) 00000111110000011111... 10
25912161923 26...) 001102i0011021. .. 7
35(411121319 20 2. ) 0001112200011122. .. 8
235(491011121617 18 19...)  00112230011223. .. 7
4 5(13 14 22 23 31 3240 ...) 000011112000011112. .. 9
145379111213151719...)  0101232301012323. .. 8
2453910111216 17 18 19...) (0112230011223 .. 7
12345(789101113141516...)  012345012345. .. 6




Subtraction Games

Table 1. (continued)

Subtraction set (with optional extras) nim-sequence period
6(18 30 42 54 ...) 000000111111000000111111. .. 12
16(8131520222729...) 01010120101012. .. 7
126(089121315161920...) 01201230120123. .. 7
36(4512131415212223...)  000111222000111222. .. 9
136(810121517192124...) 010101232010101232. . . 9
236(711121516202124...) 001120312001120312. .. 9

4 6(514 15 16 24 25 26 34 ...) 00001111220000111122. .. 10
246(351011121314 1819 ...)  0011223300112233. .. 8
1246(79101214 15171820 ...)  0120123401201234. .. 8
5 6(16 17 27 28 38 39 49 50 ... 0000011111200000111112. .. 11
156(3810121416 171921 ...)  0101012323201010123232. .. 11
256(91316 1720242728 ...) 0011021302100110213021. .. 11
2356(410111213141819...) 0011223300112233. .. 8
1456(3810121314151719...) 010123234010123234. . . 9
12456(89111214 15161819 ...)  01201234530120123453. .. 10
123456(8910111213 151617 ...)  01234560123456. .. 7
7(213549 63 ...) 0000000111111100000001111111. .. 14
27(111620 2529 34 ...) 001100112001100112. .. 9
37(131723173337...) 00011102210001110221. . . 10
47(56 151617 18 26 27 28 ...)  0000111122200001111222. .. 11
147(91215 1720232528 ...) 0101201201012012. .. 8
247(1013 16 19 22 25 28 31 ... 00112203102102. . . 3
347(5613 141516172324 ...)  00011122230001112223. .. 10
1347(5911121315171920...)  0101232301012323. .. 8
2347(8913141518192024...) 0011220314200112203142. .. 11
57(617 1819 29 30 31 41 ...) 000001111122000001111122. .. 12
257(1115 17 20 24 27 29 33 ... 0011021322031001122332. .. 22
357(4613 141516172324 ...)  00011122230001112223. .. 10
2357(4611121314151620...)  001122334001122334. .. 9
2457(3611121314151620...)  001122334001122334. .. 9
6 7(19 20 32 33 45 46 58 ...) 00000011111120000001111112. .. 13
167(3579111315171819...) 010101232323010101232323. .. 12
267(1115192024283233...) 00110011203120011001120312. . . 13
1267(49101214 15171820 ...)  0120123401201234. .. 8
367(4513141516 172324 ...)  00011122230001112223. .. 10
1467(912141719202225...) (01012012320120101201232012. .. 13
2467(3511121314151620...) 001122334001122334. .. 9
13467(5911131415161719...)  01012323450101232345. .. 10
256 7(101417 18 19 22 26 29 ... 001102132233001102132233. .. 12
12567(491012131516 1718 ...)  0120123453401201234534. .. 11
14567(391113141516 1719 ...)  01012323450101232345. .. 10
1234567(910111213 141517 ...) 0123456701234567. .. 8
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Py

The table displays many regularities. For all entries except {2,4, 7} the sequence is ezactly
periodic in the sense that G(n) = G(n+p) for all values of n > 0. Moreover for every other
entry except {2,5,7}, the period p is the sum of two numbers from the subtraction set. We
feel that these features deserve explanation even though they occasionally fail. It is easy to

prove that they hold for two-element subtraction sets and for sets in which s;1 < 5; + s1.

There are obviously some new theorems waiting to be discovered. In Chapter 15 we shall
analyze subtraction games S(a,b,a+b) and we close here with a surprising result about all

subtraction games:

Ferguson’s Pairing Property

T. S. Ferguson has observed and proved that there is a remarkable pairing between nim-values

0 and 1 in any subtraction game, namely

G(n) =1 if and only if G(n — 51) = 0, where

51 is the least member of the subtraction set.

For example, the nim-sequence for S(2,5, 6):

1 1 1 I3
001102130210011021 ...
) g Y

has its zeros and ones paired as shown (s; = 2).

We can prove Ferguson’s pairing property by obtaining a contradiction. If n is the least

number for which the above boxed statement fails, we have either

Gn)=1land G(n—s1) #0 or
These respectively imply
G(n — s; — s;) = 0 for some sy,
which implies inductively
G(n — s1) = 1, or
which implies
G(n) # 1.

G(n—s1) =0and G(n) # 1.

G(n — si) = 1 for some sy,
which implies inductively
Gln — s — s1) =0,
which implies

G(n —s1) # 0.

In Chapter 13 we shall show how Ferguson uses this pairing to analyze subtraction games
in misere play. For subtraction games with long periods, see the references to Althdfer,

Biiltermann and Flammenkamp.
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Grundy Scales

Calculation of nim-sequences is often made easier if we use a Grundy scale. Figure 2 shows
such a scale being used for the subtraction game S(2,5,6). Successive values are written on
squared paper and the arrowed entry is computed as the mex of the underlined entries, before
the scale is moved on one place. Thus in Fig. 2, G(14) = 1 is about to be computed as the mex
of 0, 2 and 0. Boxwood scales like that in the figure are expensive, but a serviceable substitute
can be made from a strip of squared paper.

[ n=Jo]1]2]3]4]5]6 of 11 [12]13]18]15 [1e
[ﬁ(n)=/o./o/f/f?o/2/f/£/oa/zs//://o /o//f// // // //

mex (0,2 and 0O) = { /

Figure 2. Using a Grundy Scale.

Other Take-Away Games

We can modify the rules slightly so as to obtain games with less regular behavior which can
still be handled by the same methods, provided the rules are such that only one heap is affected
by any move. In the game called -123 the possible moves are to

remove a heap containing just one bean,
or remove two beans from any heap with more than two,
or remove three beans from any heap.

A heap of one has nim-value 1, since it may be reduced to zero, using the first kind of move.
The restriction on the second kind of move implies that that a heap of two has nim-value 0,
since it cannot be removed. For heaps of three or more we can use the Grundy scale shown in
Fig. 3, since either 2 or 3 beans may be removed.

We can see that the sequence has period 5 after the first few terms, and this property will
persist: the scale now refers to the same numbers (1,0) as it did five steps ago and so we get
the same answer, 2, for G(13) as we did for G(8).

o
~

|90 |[12[13]{14]|15
tjojol2|11(1lojo

a3
ﬂ‘ﬂ

Figure 3. The Nim-sequence for -123

n=|10(11213|4]|5
4m=(0)1]ofz2]|2

n —

n-4
-3
-2

-5
-t
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Dawson’s Chess

="y

R T T
e A.-'ff !
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Figure 4. Ready for a Game of Dawson's Chess.

T. R. Dawson invented a game, which, as modified in Guy & Smith, we shall call Dawson’s
Chess. It is played on a 3 x n chesshoard with White pawns on the first rank and Black pawns
on the third. Pawns move (forwards) and capture (diagonally) as in Chess; in this game
capturing is obligatory and the winner in normal play is the last player to move. We shall see
that “queening” can never arise in this game. For example, if White starts on a 3 x 8 board by
advancing his a-pawn, Black must capture this with his b-pawn, White must then recapture
with his b-pawn and the result is Fig. 5(a) in which the a-pawns are immobilized and it is
Black’s turn to move. If Black now advances his f-pawn, White must capture with his e- or
g-pawn, which Black will recapture, and after two further recaptures we reach Fig. 5(b). Once
again a pair of pawns is blocked and the player to move has changed. White may pass the
turn back to Black by advancing his h-pawn, and so immobilizing yvet another pair of pawns.

(a) (b)

2413212 % 21 1
7 . R ) &
RIGER T, RRART)

e f g h b ¢ d e f g h

iy

5 %

a b ¢

PN

Figure 5. Playing Dawson’s Chess on a 3 x 8 Chessboard.

In general the advance of a pawn is followed by pairs of captures until the neighboring files
are empty, isolating an immobilized pair of pawns and passing the turn to the opposing player.
So we can imagine the same game played by skilful players with rows of pins like Kayles. This
time the rule is that any one pin may be taken out provided that its immediate neighbors, if
any, are removed at the same time. The player unable to move because no pin remains is the
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loser. When recast in this way as a pin game, we can see that the game is impartial, even
though the moves in the board game were different for the two players. Moreover as in Kayles
the initial row of pins may become separated into independent rows and the value of the whole
position will be the sum of the values of these.
The moves from a row of 11 pins leave rows of
9, 8 Tandl, 6and2  5and3, or 4and4
pins, so that

G(11) = mex (G(9), G(8),G(7) £G(1),G(6) £G(2),6(5) £G(3),6(4) 1 G(4)).
With the natural conventions G(—1) = G(0) = 0, we have in general

G(n) = mex (G(a) £G(b)) where 1<ab and a+b=n—3.

n [-]o[1]2]3]4]5]6]7][a]s[to]n]w]nlu] =

| 4n) {ojosi|1]|2]o][3]1]1]a]3]3 =
3]s|ol1[1]3]e]2]]1]0]ol4n =
§1211I098?654-3210—1m| 3
N 11 ] =~

Figure 6. Calculating G(11) in Dawson's Chess.

A Grundy scale suitable for this calculation appears in Fig. 6. As the nim-values are computed
they are entered both on the paper and, in the reverse order, on the scale. Reading from the
figure we see that G(11) is the mex of the nim-sums G(a) ’{.‘Q(b} in the table

Gla) =00112031103
Gh) =30113021100
Gla) FG(L)=30001010003

whence G(11) = mex (3,0,1) = 2.

n 0123456789 11 13 15 17 19 21 23 25 27 29 31 33

01120311033224052233011302110452T74
3410112031103 3224455233011302110453T74
681 81120311033224455933011302110453T74
102181120311033224455933011302110453T74
136 | 8 11

Table 2. The Remarkable Periodicity of Dawson’s Kayles.
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A persevering reader, armed with a very long Grundy scale, might find sufficient reward in
the remarkable pattern that emerges (Table 2). If we disregard the seven exceptional numbers
printed bold-face in the table, we find that the nim-values have period 34, and of course if this
persists, we can regard ourselves as having solved the game completely.

Does it persist? In Fig. 7 we take a careful look at that very long Grundy scale, set to
compute G(174), which is the first value we don’t need to compute. As the scale is positioned,
we can see two complete periods of 34 regular values between the innermost exceptional ones
(G(51) = 2; one is on the scale, the other on the paper).

The. exceplional mim—values ———2 x M regular values —— —3l
! | N AN

43 b LR E]
P A0 1ngtpnn W st T s e SAGE it vt A, A oA AL A L, it B et = iAo P A (R %

5("‘] 00 -« e 0022, 7 btk et LDt s B - s i o b, e T Arton s AT bty il i s it e N YL At i L et ]

i 1L Ay s, A e P, L P, e A Lty e A e e L s B ke e O e st 32 ettt cane ()

l-._,._,‘_‘\.-_o\l\o-m_ﬂn-WPMMm_n_.ldl_\,\_,"‘—\ﬂ—-—-\ﬂ—‘l.-ﬂ-ﬂ’-&-'m—"‘—l.u_ﬂ.;lﬂ—WMM*—]MM-.-[‘LHIMHM«-O" i

Figure 7. A Finicky Look at a Very Long Grundy Scale.

The calculation is exactly the same as it was for G(140), with the scale shifted back 34
places, except that 34 of the nim-sums of regular values are repeated. So the last value we
need to compute in order to establish periodicity is G(173). The number 173 is obtained by
doubling the last irregularity (51) and adding twice the period (34) together with the number
3, the largest number of pins that may be taken in a single move.

The Periodicity of Kayles

It is slightly harder to use the Grundy scale for the original game of Kayles in which one or
two adjacent pins may be removed from anywhere in the row, giving the equation

G(n) = mex (G(a) £G(b)) where 0<a,b and a+b=n—1 or n—2.

We could first align the scale and note down the nim-sums for a + b = n — 2 and then realign it
and adjoin those for a+ b = n — 1, before taking the mex. However, by placing the scale in an
intermediate position we can read off all the nim-sums with one setting. The small arrows in
Fig. 8 indicate exactly which pairs of numbers must be nimmed to calculate G(11). Reading
them from left to right we find

G(11) = mex (2,4,5,0,3,0,1,0,2,5,0,5,2,0,1,0,3,0,5,4,2) = 6.

(The obvious symmetry means we need only examine half of this list, but caleulation of the
whole list provides a useful check when doing hand calculation.) The nim-values for Kayles
also exhibit periodicity (see Table 3). This time we have period 12, but with 14 exceptional
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Figure 8. Grundy Skayles?

values, the last of which is G(70) = 6. The periodicity may be checked by verifying that it
holds up to
n = 166 = 2(70) + 2(12) + 2.

since the last irregularity occurs at n = 70, the period is 12 and no move takes more than
2 pins.

n 0123456738 91011

0123143214286
121 412714321467
241 412854721867
614123147218 27
4814128147214 27
6041281472 18¢6 7
7214128147218 27
4412814721827
9% | 4128147

Table 3. The Periodicity of the Nim-Values of Kayles.

Other Take-and-Break Games

Let us turn Dawson’s Chess into a game with heaps. Recall that in the form with pins a pin
may only be removed along with its neighbors, so that:

A single pin may be removed just if it is the only pin in its row, and so leaves nothing
behind.

Two pins may be removed ounly if they are the two pins at one end of a longer row
or form a whole row by themselves, so their removal leaves either a shorter row or
nothing at all.

Any three adjacent pins may be removed; their removal will usually leave two shorter
rows, but may leave only one row or none at all.
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So if we play it with heaps of beans, the moves from a single heap must have the effect of
replacing that heap by

0 heaps, if just one bean is removed,
1 or 0 heaps, if just {wo beans are removed, and
2, 1 or 0 heaps, if just three beans are removed.

We can symbolize such conditions by a code digit for each number of heans that may be
removed. For Dawson’s Chess these digits are

1 20 for removal of one bean,
3 2t 4 2° for removal of fwe beans,
7 22421 42%  for removal of three beans,

and so the game may be written symbolically as -137.

More generally, if in some game we remove k beans from a heap provided we partition

what remains of that heap into just a or b or c or ... heaps (where a, b, ¢, ... are distinct) we
give that game the code digit
d, =2° 4204 2°4 ... for removal of k beans.

In Kayles we can remove 1 or 2 beans in any way so as to replace some heap by 2 or 1 or 0
heaps, so that d; = dy = 7, since 22 4 2! + 2% = 7. In Dawson’s Chess we have seen that
d; =1,d; = 3 and d3 = 7. For the game we called -123 we have d; = 1, d2 = 2, d3 = 3.
In general there is a game
'dl dzdg .

for any possible sequence of code digits. In this notation, Kayles is the game

-T7= -77000. ..
while Dawson’s Chess is, as we have already seen,

-137= -137000. ..

If the digit di. = 0, there is no move removing exactly k beans. The subtraction games are
those in which every code digit is 0 or 3 (3 = 2! + 29%); for example S§(2,5,6) has the name
-030033. Table 4 interprets the smallest values of dj.

Dawson’s Kayles

The particular case -07 corresponds to the bowling game in which the only legal move is to
knock down twe adjacent pins. We call this Dawson’s Kayles because it is a sort of first cousin
to Dawson’s Chess (-137). In fact the nim-value, D,,, of a row of n pins in Dawson’s Kayles
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Value of d;  Conditions for removal of £ beans from a single heap.

Not permitted.

If the beans removed are the whole heap.

Only if some beans remain and are left as a single heap.

Provided the remaining beans, if any, are left in one heap.

Only if some beans remain and are left as exactly two non-empty heaps.
Provided the remaining beans, if any, are left as two non-empty heaps.
Only if some beans remain and are left as one or two heaps.

Provided the remaining beans are left in at most two heaps.

Only if some beans remain and are left in just three non-empty heaps.

[r A B~ R O LI T ]

ete.

Table 4. Interpretation of Code Digits for Take-and-Break Games.

is the same as that of the Dawson’s Chess game with n—1 pairs of pawns:

iy
o
o

Il

n=10 12
1

4 78910111213 141516 17 18 19 20 ...
D,=0.0 2 11

03 3 2 2 405223 3...

o
=
o}

Because its rules are slightly simpler than those for Dawson’s Chess, it is Dawson’s Kayles
that arises most naturally in other contexts, and so in Chapters 8, 13, 15 and 16, the notation
D,, refers to this variant.

Variations

The nim-sequences for these take-and-break games are often related to each other in various
ways. The nim-values for -17

n=0 12345678 910111213 141516 17 18 19 20 ...
G(1M)=0.1102130113 2 23 415322 3...
G(OT)=0.0112031103 322405 2233...

are obtained from those of Dawson’s Kayles by nim-adding 1 when n is odd.
Some other cases show duplication or doubling of nim-values, as we'll see later.

Guiles

For many of these games the nim-values are easily established, using suitable Grundy scales
and taking care with the early values. The possible moves in the game of Guiles are to remove
a heap of 1 or 2 beans completely, or to take two beans from a sufficiently large heap and
partition what remains into two smaller non-empty heaps. In short it is the game -15.

As usual, G(0) = 0, and since the only moves from heaps of 1 or 2 remove them completely,
we have G(1) = G(2) = 1. A heap of 3 admits no legal move and can take no part in the game,
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G(3) = 0. For larger heaps we have
G(n) = mex (G(a) $G(b)) where 1<a,b and a+b=n-2.

and we can use the Grundy scale shown in Fig. 9. The nim-sequence is
0.11011221221101122122110...
in which the values after the point turn out to have period 10.

| 1.0 =
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| !
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Figure 9. Guiles.

Treblecross

Treblecross is a Tic-Tac-Toe game played on a 1 x n strip in which both players use the same
symbol (X). The first person to complete a line of three consecutive crosses wins. How shall
we analyze this game?

It’s stupid to move next or next but one to a pre-existing cross, since yvour opponent
wins immediately. If we consider only sensible moves we can therefore regard each X as also
occupying the two neighbors of the square in which it lies (one of which may be off the board),
and no two of these 3-square regions may overlap.

Our treblecrosser is therefore only James Bond (-007) in disguise (see Fig. 10)!

el [EEEE e B R e e |
i ' 1 !
i 4 ' H I
: ' 1 ;
inaial nlnind Sviwialui? SR .- ndndubutals infudadsisted ittt

<A heap of & in 007> <«———A haap of 6 in-00T—>

Figure 10. Treblecross is -007 in Disguise.

So writing XnX for a strip of n empty squares between X’s, and using [ and | for the ends
of the board we have the values:
(0] (1] (2] (3] [4] [5] (6] (7] (8] (9] [10] [11] [12]
Treblecross X0] X1] X2] X3] X4] X5] X6 X7] X8] X9] X10] X11] X12] X13] X14]
22X XX X4X XX X6X XTX XX XX X10X X11X X12X X13X X14X X15X X16X
-007 heap 0 1 2 3 4 5 6 T 8 9 10 11 12 13 14
nim-value 0 0 0 1 1 1 2 2 0 3 3 1 1 1 0

For more on Treblecross, see the Extras.
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Officers

The take-and-break games often arise in other unexpected contexts. We shall see that both
Kayles and Dawson's Kayles arise naturally in the theory of Dots and Boxes (Chapter 16) and
Dawson’s Kayles in the game Seating Families of Five (Chapter 8), a variation of the game
we called Seating Couples in Chapter 2. Some other cases appear in our Chapter 17 on Spots
and Sprouts, and we give a further example here.

/ ‘\
AN

"., i\ .

N

Figure 11. A Seven-Man Army in Disarray.

The army has been in disarray and the General has reduced all officers to the ranks and
made everyone directly responsible to him. He now intends, on the alternate advice of his
military advisors, Left and Right, to recruit, from outside the army, a new heirarchy of officers.

Left and Right will alternately advise that some officer currently in direct charge of four
or more officers and men should recruit a new subordinate. The new officer will be directly
responsible to the one who appointed him, and will, until further notice, take over direct
responsibility for three or more, but not all, of those officers and men previously directly
responsible to his appointer. Of course the game must end when every officer has either 2
or 3 direct subordinates, and whichever of Left and Right gave the last advice retains the
confidence of the General.

We can play the game with pencil and paper by drawing the men with a circle round them
all to represent the General, as in Fig. 11. As each officer is recruited we draw a circle round all
his subordinates. Figure 12 shows four different ways in which the first officer can be recruited
for the seven-man army.

For administraive purposes officers are classified, not according to rank, but according to
their number of direct subordinates. A class n officer is directly responsible for just n + 2
officers and men. So the General for the army in Fig. 11 is initially a class 5 officer, but after
the first move his class will be reduced in one of the four ways indicated in Fig. 12.
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Figure 12. The First Recruit Takes Command of his Men.

Every move reduces the class of some officer from n to a and introduces a new officer of
class b, where a + b = n—1, and b may not be 0. So the Officers game is equivalent to the
take-and-break game -6, in which one bean is removed from a heap and what remains of that
heap must be left in exactly 2 or 1 non-empty heaps (6 = 22 + 21).

The initial nim-values for -6, namely

0.01201231234034213210214351
4 5120123123423 42342102842%53
4 56251231234234234230

after starting with period 3, show a strong inclination towards a period of 26. Richard Austin
computed as far as G(10342) = 256; a complete analysis is still to be found.

Should the officers hold a ball in honor of the superb reorganization of their army, the game
itself will provide an excellent waltz (N.B. one note spans the 7th and 8th bars).

We are indebted to the trustees of Blanche Descartes and to the publishers of Eureka
for permission to reproduce the -6 Waltz, and to make small changes in the words and the
arrangement. See the illustration on the following page.

Grundy’s Game

Grundy’s Game is a breaking game in which the only legal move is to split a single heap into
two smaller ones of different sizes. Eventually all the heaps will have size 1 or 2 and can no
longer bhe split, and the player who splits the last heap is the winner. You can use a Grundy
scale to work out the values, provided you remember not to include the move which breaks a
heap into two equal ones. Here are the first 101 nim-values:

n=019 0001021021 0213213243
2039 0430430412 3124124124
40-59 1541541541 0210215213
60-79 2132432432 4324324324
80-100 5245243743 7437435235 2...

The strong tendency to period 3 continues as far as values have been calculated, but the
sequence has not been proved to be periodic, despite extensive calculations by many people.
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The -6 Waltz

(unfinished)

Melody by -6. Arr. C. A. B. Smith Words by Blanche Descartes

Key of G.

apds
all
of

all
T
e

In 1973 we computed more than a quarter of a milllion values and discovered some interesting
phenomena we'll tell you about in the Extras. Variations on the game appear in Chapters 10,

13 and 14.

Prim and Dim

In Prim you may remove m beans from a heap of size n provided m and n are coprime (i.e.,
no number larger than 1 divides both m and n). In Dim you may take d beans from a heap
of size n provided d divides n. Each game has two variants:

Prim™ if 1 to 0 is legal; Prim™~ if not.
Dim™ if n to 0 is legal; Dim™ if not.
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Here are the nim-values

n 012 3 5 67 8 9 101112131415 ... n>0 ...
Primm 0.01 2131412 1 5 16 1 2 ... j
Prim™ 0.1 02030402 0 5 06 0 2 ... j
Dim~= 0.0 1 0 010301 0 2010 ... k
Dim* 0.1 2 1 3 1 141 2 1 3 1 2 1 ... k+1

where the jth prime is the least prime divisor of n,
j' is obtained from j by swapping 0 and 1, and
2% is the largest power of 2 dividing n.

Replication of Nim-Values

It is easy to see that the subtraction game S(4, 10, 12) has nim-sequence
0.000111100221133002211000011. ..

obtained by duplicating every digit in the nim-sequence
0.0110213021001...

for the subtraction game S(2,5,6). More generally the nim-sequence for

S(ms;, msa, ..., ms)

is the m-plicate of that for
S(s1,82,-..,5k)

obtained by repeating each nim-value m times.

Any game, such as -777077, whose code has only 0’s and 7’s and no isolated 7’s, has an
m-plicate. Wherever there is a run of 7's between d,, and d,.; inclusive in the original game,
the m-plicate game will have a run of 7’s from d,,., to dy.o1 inclusive, and otherwise has
only 0 digits. Games obtained by changing some digits, not at the ends of these runs of 7’s,
will have the same nim-sequence provided that not more than 2m —2 consecutive digits are
changed.

Double and Quadruple Kayles

Double Kayles is the game 7777 in which any number up to four beans may be removed
from a heap and what remains is left in at most two heaps. We display its nim-sequence in
correspondence with that for Kayles (= -77).

Double Kayles | 0.1 |23 |45 |67 |32 (8976|5432 (89|45
Kayles 0 1 2 3 1 4 3 2 1 4 2

The reader will see that each nim-value g for Kayles doubles up into a pair of values 2g, 2¢g—1
for -7777 in either that or the reverse order. Guy and Smith showed that this situation persists
indefinitely and that the order is given by the scheme shown in Table 5. The table applies
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equally to the game Quadruple Kayles (-77777777) except that now g in Kayles is replaced
by a sequence 4g, 4g+1, 4g+2, 4g+3 or its reverse according to the same scheme. The game
S77...7 with 2™ 7°s may be called 2"-tuple Kayles. Its nim-sequence is similarly obtained
on replacing g by

2Mg, 2Mg+41, ..., 2™(g+1) -1

or the reverse. The rather irregular-looking scheme can he summarized as follows: write the
value G(n) = g for Kayles in binary and ignore the 2’s bit (e.g. 7=0111); if the sum of the
remaining bits is even, and n is even, then the sequence is in its normal order, as it is if both
n and the sum of the remaining bits is odd; otherwise the sequence is reversed.

For -7777 For -77777777
G(n) | neven nodd | neven n odd n even n odd

0 up down 0,1 1,0 0,1,2,3 3,2, 1,0

1 down up 3, 2 2,3 7,6, 5,4 4,5, 6,7

2 up down | 4,5 54 | 89,10,11  11,10,9,8

3 down up 7,6 6,7 | 15,14, 13,12 12, l?, 14, 15
4 down up 9,8 89 | 19,18 17,16 16,17, 18,19
5 up down | 10,11 11,10 | 20, 21, 22, 23 23, 22, 21, 20
6 down up 13,12 12,13 | 27, 26, 25, 24 24, 25, 26, 27
7 up down | 14,15 15,14 | 28,29, 30, 31 31, 30, 29, 28
8 down up 17,16 16, 17 | 35, 34, 33, 32 32, 33, 34, 35

Table 5. Values for Multiple Kayles.

Lasker’s Nim

The standard game of Nim is the subtraction game S(1,2, 3,...) and so may be written -333. ..
or -3. Ed. Lasker has proposed that we adjoin the option of splitting a heap into two smaller
non-empty ones without removing any bean. It is natural to denote the new option by the
code digit dy =4, so that Lasker’s Nim is the game 4-333. .. or 4-3. Its nim-sequence is

0124356879 .

in which the numbers 4m and 4m—1 occur in the reverse of the usual order. This is one of a
number of games with infinitely many non-zero code digits, many of which exhibit arithmetic
periodicity. We will say that G(n) has (ultimate) period p with saltus s if (for all sufficiently
large n)
G(n+p)=G(n)+s.

Of course, s = 0 corresponds to ordinary periodicity. We write the nim-sequence of 4-3 as
0.1243(+4) where the parenthesis means that the saltus 4 is to be added to each successive
period, and similarly for other games displaying arithmetic periodicity,

Some other games of this type appear in the Extras.




Extras

Some Remarks on Periodicity

When we used our very long Grundy scale to analyze Dawson’s Chess (= -137) we were
exemplifying a general theorem for all games whose code digits d, = 0 for z > t. If the
nim-values of an octal game are observed to have period p after the last irregular value G(i),
then the last value that need be computed to verify that the period persists is

G(2i+2p+t).

After this point we can see that the calculations will duplicate earlier ones in the same way
as they did for Dawson’s Chess. Some of the examples displayed below in Tables 6 and 8 are
(ultimately) periodic, but many games of this kind have not yet been shown to be so. It is
an open question whether there are games with only a finite number of non-zero code digits
which do not ultimately become periodic. We will have more to say on this topic at the end
of the Extras.

Standard Form

If we analyze the game -4 (take one bean and break the remainder of the heap into two
non-empty heaps) we find that its nim-sequence begins

0.001120311033224052233011302.. ..

where G(1) = G(2) = 0 because we cannot move from heaps of 1 or 2 beans. From here on the
values agree with those for Dawson’s Chess, if we have 2 more beans in a heap in -4 than we
had pairs of pawns in Dawson’s Chess. A similar coincidence occurred when we analyzed -07
(Dawson’s Kayles; take 2 beans from a heap, leaving the rest of it in at most two heaps).

Generally, if d; is even, we are not allowed to remove a heap of 1 bean and G(1) = 0, but
if d; is odd, we can remove isolated beans and G(1) = 1. In the latter case (d; odd) we say
that the game -d1dsdy. .. is in standard form.

A game D = .d;dsdy ... with d; even can be reduced to standard form by (a sufficient
number of) applications of the following rule. Construct a new code name E = -ejeze;...
from -d;dsd; ... where

e, contains 1 (i.e. is odd) if d,.y contains 1

e, contains 3 (i.e. is of form 4m+3) if d, contains 2 (is of form 4m+2 or dm+3)

e, contains 7 (i.e. is of form 8m+7) if d,—; contains 4 (is of form 8m+4, 5, 6 or 7)

e, contains F (=15, i.e. is of form 16m+15) if d,_, contains 8, and generally

e, contains 221 if d,, contains 2" (h > —1).

Then it is not hard to show that

Ge(n) = Gp(n+1).

100
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If e; is now odd, E is in standard form and we will call D its first cousin. If e; is even, we
repeat the rule. If ¢ applications of the rule are necessary before the game D is changed to
standard form, we say that D is the tth cousin of its standard form. For example, Dawson’s
Kayles is the first cousin and -4 the second cousin of Dawson’s Chess. Again if we apply the
rule to D = .04 or to D = 042 we obtain E = -007, and two further applications give -0137
and -11337. So -04 and -042 are third cousins, -007 a second cousin and -0137 a first cousin,
to -11337.

A Compendium of Octal Games

Tables 6 and 7 give information about all octal games (i.e. every code digit less than 8) of the
forms -dyds, 4-d; and -d;dad3, 4-d;ds. Dots indicate the first complete period. A question
mark, 7, for the period means that we are not aware that the nim-sequence has been shown
to be (ultimately) periodic. The sign § is a reference to the additional remarks on page 109,

or to Tables 8 or 9.
If you can’t find your game -d;d,, or 4-d; in Table 6, use the table below to locate the

appropriate row. Similarly the table on p. 103 locates 3-digit octal games in the rest of Table
7 or in Table 6; the octal points have been omitted.

da | 0 1 2 3 4 5 6 7 | 4d;
d,
0 -02 05
1 01 -02 51
2 ‘05 -05 22 .05 05 06 | 05
3 05 22
4 07 17 07 17 44 45 | -TT
5 -05 51 51
6 37 37 .37 37 64 64 64 | .77
7 05 -26 75

Game Locator for Table 6.




cousins standard
game 2nd 1st form nim-sequence, from G(1) =1 period
01 001 .01 1 10 1
02 02y 03y 13 11006 4
04 -007 -0137 11337 1112203311 1043332224 4055222330 5011133356 ?
05W -2YW  U0X hy
.05 i0 2
{ 012 4WY 10U }
.06 -06x -03T 1337 1122031122 3344053342 2113022114 4552647581 ?
07 AWx 07x 137 1120311033 2240522330 1130211045 2740112031 34
11 011 11 110 1
12 12 1001 4
14 14 1001021221 0414412212 0104126164 1401021261 ?
15 15 1101122122 10
16 16 1001221401 4214014214 2102142145 1421421423 149459%
17 -AVy AT 1102130113 2234153223 1103120114 4264110213 34
22 28y .33 i20 3
2Tx 33U o
26 { i Tax } 1230 4
31 2yl .31 1201 2
32 32y i02 3
34 34y 101201 03121203 8
.35 .35 120102 6
.36 36y 1021021321 3243043241 2312012415 4154152102 ?
.37 Bxy .37 1201231234 0342132102 1451451201 2312342342 7
44 -4Qx -07TZ 1377 1122331144 3322114422 6644112277 1144332211 24
45 4Rx 177 1122311443 2211422644 1122711443 2211482744 20
51 5PY 4.PY i 1
52 52x 1022103 4
53 53y 1122102240 122112241 9
54 Bdx 101222411 7
56 B6x 1022411324 4662117684 11654811C4 56113C6689 144§
175 o
5T 53z -5TY i122 A=10, B=11, ¢ =12 4
41T 45N
64 6Zx 377 1234153215 4268123745 8205476814 624B23854 ?
. 2y3 -31M i
71 { it it } 1210 2
T2 32N 72X i023 4
74 Tdx 1012324146 2321517685 1AB26845A6 2151562681 7
35R 75X y
75 12 2
{ 47Y }
76 T6x 1023416234 1673216752 896587144 371A428613
7 4-Qx Ty 1231432142 6412714321 4674128547 2186741231 12
4-3 352 4-3Y 120 2
M=1,3,5,7 N=2,3,6,7 P=15 Q=46 R=5,7 S=2,3 T=6,7 U=3,5"7 V=13
W=0,2 X=0,1,2,3,4,5.6.7 x=1,2,3 Y=0,1,4,5 y=0,1 Z=4,5,6,7 z=4,5

Table 6. Octal Games with two Code Digits.
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dz;= 1 2 3 4 5 6 T da= 1 2

d;dz didz

00 op — o002 — — — 04 10 — —
01 1 o5 002 — — — — 11 —  —
02 0z — 022 — 024 — 026 12 — —
03 02 022 022 — 034 06 06 13 — —
04 017 04 017 — — 044 045 14 — —
05 — 05 051 — — 054 055 15 51 —
06 06 06 06 — 064 064 064 16 — —
(1) 07 07 07 44 44 44 44 17T — —
20 31 o5 M1 — — — — 30 05 05
21 31 05 71 204 205 206 207 31 71 —
22 22 26 26 — 224 — 226 32 32 T2
23 22 26 26 224 224 226 226 33 — —
24 Y1 05 71 — — 244 245 34 34 —
25 71 05 71 244 245 244 245 35 — 43
26 26 26 26 — 264 264 264 36 36 —
27 26 26 26 264 264 264 264 37 — 332
40 07 07T 07 — 404 404 404 50 05 05
41 17 173 173 — 414 — 416 51 51 —

42 07 07 07 404 404 404 404 52 52 52

43 17 173 173 414 414 416 416 53 53 —
44 44 44 44 — 444 444 444 54 54 54
45 45 45 45 — 454 454 454 55 51 157

46 44 44 44 444 444 444 444 56 56 56
47 45 45 45 454 454 454 454 57 57 536

60 37 373 373 — 604 — 606 TO 05 05
61 37 373 373 604 604 606 606 T1 T1 T1
62 37 373 373 604 604 606 606 T2 T2 T2
63 37 373 373 604 604 606 606 T3 26 26
64 64 64 64 — 644 644 644 T4 T4 T4
65 64 64 64 644 644 644 644 T5H T5H T5
66 64 64 64 644 644 644 644 T6 T6 76

67 64 64 64 644 644 644 644 TT TT —
do= 1 2 3 4 5 6
4-d;
40 05 26 26 05 05 26
41 51 — 412 51 51 5T

42 05 26 26 05 05 26
4.3 43 332 332 4.3 4.3 332
44 7T T 7T TT6 TT6 T76
45 51 5T 57 51 51 57T
46 T7T 7T 77T T76 TT6 T76
47 T — 472 75 TH 4.72

532
54
157
56
536

05
71
T2
26
T4
75
76
TT2

7

26
57
26
332
776
57
776
472

147

57

05
T1
T2
26

75

57
05

T1
324

344
5
364

05
51
524
57
147
51
564
57
05
71
T2
26
T44
75
T64
TT4

157
524
147
157

564
536

05
71
T2
26
T44
75
764

147
157
564
536
05
71
T2
26
T44
75
764
776

Game Locator in Tables 7 and 6.
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Taking and Breaking

cousins standard

game 2nd 1st form nim-sequence, from G(1) =1 period
002 003 -013 113 111000 6
004 00137 -011337 -1113337 1111222033 3111104433 3322224440 5552222333 7
005 -005 0107 -10137 1011222033 4110154333 2221601045 2216657010 7
006 -0037 01337 -113337 1112220331 1122433355 2144333222 1114050222 7
014 014 -1007 1001012212 3401051212 5303451211 2303323451 7
015 015 1107 1101021223 0142145122 3234014512 5123423401 7
016 016 1037 1012220101 4422161604 2127661512 8461210845 7
017 017 1137 1112023114 0451320211 1402616404 1112026154 60§
022 028 -03S 133 11200 5
024 02z 0307 -13137 1122304112 5324115560 3125148142 1967422168 7
026 02T 0337 -13337 1122304112 5334112530 4421133442 1156322815 7
034 -03z 1307 1102231401 4312210514 5632481402 7624584113 7
044 0077 01877 -113377 1112223331 1144433322 2111444222 6664441112 36
045 -04R 0177 11377 1112223311 1444332221 1144222664 4411122277 32
051 05V 117 1110221340 1113222340 1543222310 1043222010 48§
054 05Q 1077 1012223441 1163222411 6667344511 1673544187 7
055 O05R (1177 1112223111 4443222111 4222644411 1222711144 1485
064 -06Z 0377 13377 1122334115 5332211544 2266841122 3374455872 7
101 101 1010 1
102 102 100011 6
104 104 1000102212 2410401566 1228104015 6625481010 7
106 106 1000122214 4010621242 1045166512 4510653045 7
111 111 1110 1
112 112 10001 6
114 114 1100112021 2041104115 2415241120 1120432244 7
115 115 11101112221222 14§
116 116 1100212021 1044152411 2041204115 4425202154 96§
121 121y 102io0i 4
122 122y ioo2i 5
123 123y 102210021 5
124 124y 1001102130 2130113023 3223425042 5322332031 62§
125 125y 1021102130 1130234223 4253225320 3110312011 7
126 126y 1002133210 4250315041 5041304130 2234453722 7
127 127y 1022104412 2014461770 1226144812 7810726814 4§
131 131 1120011 4
132 132 11002 5
134 134 1100112031 2031103122 3322435143 5223322130 62§
135 135 1120112031 1031224322 4352235221 3011302110 7
136 136 1100213021 1022334251 4223342011 2031205144 ?
141 141y 1011012212 410 11212212412 11
142 142y 1002221103 3241063231 0162240115 3384062355 7
143 143y 1012220104 2215047228 0412228104 2215047228 7
144 144y 100 1222244111 10§
145 145y 10 112222411 0§
146 146y 1002224111 3324446662 3111766842 1176534811 7
147 54Zy 10 12224411 85

Table 7. Octal Games with three Code Digits.
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Table 7. (continued)

1st standard
game cousins form nim-sequence, from G(1) =1 period
152 152y 1102220104 3231013224 0104223101 3234010222 48§
153 153y 1112221102 22440 11222111222441 14
154 154y 110 11222224111 11
156 156y 1102224411 1322444666 2111576688 1112655581 349§
57 57y 111222 6
162 162y 1002231104 2261034266 0542330142 8365142308 ?
163 163y 1022310422 6104226104 3221043265 0432610532 ?
164 164y 1001223445 1163223415 66738211A7 6675541A82 ?
165 2165y 1021321344 3623128126 5445182182 136C564812 15508
166 166y 1002234116 6224411338 5446633118 826441933A ?
167 167y 1022341162 2441133544 663315866A 44336AA443 7
171 171y 1122110214 0 11221122142 11
172 172y 1102230113 2244063224 0163220116 3344110354 ?
173 4VS 173y 1122310432 0112235143 2211023741 3221046274 40§
174 174y 1102132214 4564223115 4128865741 B22688A1BA 7
176 176y 1102234411 6223441166 332 41166334 8
204 -2y4  -3007 1012010123 1212314303 1432324323 2452021523 ?
205 -2y5 -3107 1201012312 3134034532 3253210202 5473420464 ?
206 -2y6 -3037 1012320101 2323451232 3454010342 4217545321 ?
207 -2y7  -3137 1212030124 5312124303 0214358213 6304121205 ?
224 .2Sz -3307 1201231231 4304314213 2102142641 6426120123 ?
226 -2ST  -3337 1234012345 123451230 51234 5
244 2z2Q 3077 1012323451 5673232158 9767654548 232AB45452 ?
245 2zR 3177 1212345156 7321289765 64C9212A74 52C73D2183 7
264 2TZ  -3377 1234516325 1867524816 A45267TA518 TE6153861C 7
312 312y 1202 0i 2
316 316y 120 212301030123 12
324 -32zy 1021301340 2342132034 1346201253 1678134160 ?
331 331 123 012 3
-332y
332 { 372y } 1203 4
43N

334 334y 1201203123 1243503426 1241302172 4784206152 ?
-336 336y 1203124031 2034123612 3051306413 5246301430 ?
342 -34Sy 1012320103 2345023254 0102321456 7205476232 ?
344 -34zy 1012324514 6232145876 TA14123264 1482321A18 ?
346 34Ty 1012324516 7232158676 A548923AB4 58326A1589  ?

A=10 B=11 C=12 D=13 E=14
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Taking and Breaking

Table 7. (concluded)

cousins standard
game 2nd 1st form nim-sequence, from G(1) =1 period
351 351y 12120102 8
353 353y 121 20 2
354 354y 1201243123 5243513524 7247864762 786836C742 ?
356 356y 1202124516 7512826281 5B79581212 C258561812 142§
362 -36Sy 1023410234 1523714237 0123750132 5486254872 ?
364 36zy 1021321345 3423125125 7457482962 968764721 A ?
366 36Ty 1023451623 4576891276 8543201583 284AB3659A ?
371 371y 1231032402 3401241632 0123413421 0734162187 ?
373 6xS 373y 1 2340123415 2314721043 21402640 28
374 874y 1201243123 5243513524 7247864762 7869369742 ?
375 375y 1231243213 4274814812 4814381482 148148 1248 185§
376 376y 1203124352 4351432645 86TAR827362 7465392534 48
404 -4WZx -07xTx 13737 1122334115 6332211087 7255401122 8845566772 ?
414 4Vzx 1707y 1102234401 1322344566 3223118763 AA01187644 ?
416 AVTx 1737y 1122341166 3221066844 5A17833241 66884AACIS ?
444 -4QZx -0777Tx 13777 1122334115 6332211887 7655441122 8845566778 ?
454 ARZx 1777y 1122341166 3221166844 5A11833447 6688411678 ?
512 -51Sy 11 122210 6
524 52Zy 1022104416 7012261446 1870187614 7610781674 52§
532 -53Sy 112240 2241 5
63Ty R i
536 {'57NY } 11224 5
564 56Zy 1022441132 5476823A76 8932065432 11945AACE9 ?
604 6xzW 3707y 1201231234 5345321321 0254754768 9201239674 ?
606 6xTx 3737y 1234012345 1234562345 6734167891 6789143765 ?
644 6ZZx 37TTTy 1234516325 896A5496EA 42367G49EA GHI4EF19G2 442§
744 74Zy 1012324516 723218967A 45981 ABA45 961AB39896 ?
764 T6Zy 1023451623 4576891A76 8543261543 28 EAB59GEF ?
T2 TTSy 1234162 4163 4
774 TTzy 1231456713 289546C219 645CD23895 6DC3296AGC 7
776 4-QZy 77Ty 1234163216 T4581A5476 1236143218 A4EG 123416 ?
412 4.1Sy 11220 4211221 7
4.72 47Ny 124 3

A=10 B=11 C=12 D=13 E=14 F=15

G=16 H=17
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period regular nim-values, G(n), exceptional nim-values,
game P n=12,...,p, modp G(0) =0, G(1) =1 and
017 60 1112026114 0461320211 1402616404 G(7) =3,
1112026154 0461320211 1802616404 G(13) = 5.
‘051 48 10102323 40101323 23401043 G(n) =1 for n =2,7,12, G(22) =5,
23231010 43232010 10432340 G(n) = 2 for n = 6, 16, 26, 36, G(46) = 5.
-116 96 1120A120 61104415 24112041 G(3) =0, G(88) =1,
50411524 25A0A154 2C582855  G(n) = 2 for n = 5,9, 25, 35,37, 47,
24A1A0AD5 24251140 51202114 G(n) =4 forn = 31,41,
A5142011 20A120A8 18981C20 G(n) = 8 for n = 42,94, 138.
-124 62 58411 02130 21301 G(n) =0 for n = 2,3, 28,64,
1302 3322 7465 4455 G(n) =2 for
79633 20311 03120 n = 26,30,33,34, 59, 95,
3120 1140 5547 5647 G(n) =3 for n = 24,32, 121.
-134 62 51401 12031 20311 G(3) =0,
0312 2332 6475 4475 G(28) =1,
62732 21301 13021 G(n) = 2 for n = 24, 32, 59,
3021 1041 5446 3746 G(n) = 3 for n = 26, 30, 34.
-152 48 01022201 04323101 32240104 no others
22310132 34010222 01043234
‘173 40 01223 10462 01122 75147 G(n) =3 for
22110 23741 32210 46274 n=9,16,20.
375 18 124814 G(4) =1, G(n) =2 for n = 5,8, G(13) = 7,
781482 G(n) = 3 for n = 3,7, 10, 25,
148174 G(n) =4 for n =11,17,35, G(n) = 8 for n = 18, 36.
-D24 52 1022104416701 2261446187018 no others
7614761078167 4107210781678
115 4k+10 11[1]01[1]12[2)21([2] 22 none
1[1]44  4k+10 11[1]11[1)22(2)22(2] 44 G(k+2) = G(k+3) = 0.
1[1)45  4k+9 11[1]11(1]22[2)22[2)4 G(k+2) = 0.
1[1]47  3k+8 111[1)22[2)24[4)4 G(k+2) =0.
153 5k+9 1[1]12[2]21(1]12(2]24[4] G(3k+6) = G(5k+10) = 0.
154 4k+7 [1]11[1)12(2)22[2)4 G(k+2) = 0.
A[1)[3]77 12k+20  1[1]12(2)28(8]1(1]14[4]47[7] many

2[2]21[1]18[8]2(2]27[7]44[4]

Table 8. Periods of some Octal Games.
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Taking and Breaking

1 444 7 2 C555 6 81222
11 4 4 4 8 CC 66 81222
1 2 4 4 4 Ch 666 88 222
11 27 444 5C 668 1822
11 7 4 72 CC 666 88 222
11 444 7 5 66 881 222
1 28 44 cCcc6 F 88 222
11 27 444 Ch 666 81222
11 8 4 4 2 CC 66 81222
11 444 7 2 ChHh 666 88 222
28 555 6 81 822

4 111 27 CC 666 88 222
4 4 111 2 8 5 66 881 222
4 7 111 CCcC6 F 88122
44 72 111 Ch 666 81 222
4 4 21 27 F5 66 6 1222
4 111 2 2 Ch 666 81222
4 T8 11 CC 66 81222
44 72 111 cce666 811B2
4 4 8 11 7 5C 66 81222
4 4 111 7 CC 666 88 222
78 D 666 81 222
F5 666 8 222

Period of -055 ChHh 666 88 22

C CC 66 81228

CC 666 88 222

B=11 F=15 N=23 5C 66G 1222
C=12 G=16 R=27 CC 666 88 222
E=14 K=20 5=28 5 666 81 1B2
Ch 666 8 222

ChHh 666 88 228

GFB 5151 C8 6262 CC 66 81228
GBF 1515 8C 2626 C5C 66G 8 222
BFB 5151 C8 6262 5C 668 1822
FBF 1515 8C 2626 K C 666 88 222
BFB 5151 C8 6262 5C 66 81222
FBF 151 cce666 8 222
Half-Period of -356 Period of -156

N

w

i I |

w

on

N
N
N

]

o ot

=

o

oo W E o ¢n oen
“Z Z
[SVRRO NN SR SRR (U SV e [SUI O AT I SRR s T T U

oo 1™ ]
SN N R R R N o o R R R N o R o ol o N o R R N o B N o R R N o i o N )
Z

=

o
A4
=l SUR SR s B SRR ]

o
v
Z

cran = B oo
Z
B0 O NN NN O ONONINNOND®ON®GON DD ONNONID®NDW®D DO N©O NN

LA S e e ]

Q oo Qeooocoooofo oo
Z

qEHER oo R o

Half-period of -644

Table 9. Some Long Periods of Octal Games.




h Additional Remarks 109

Additional Remarks

Table 8 gives some periods which were too long for display in Table 7. The later entries
actually refer to infinitely many games since each bracket [ ] contains a digit which may be
repeated the same number, k, of times (k > 0). Guy & Smith gave a complete analysis of -177
which may be called ;:;—plicate Kayles (period 20) whose last exceptional value is G(497) = 8.
The last entry in Table 8 is a sort of (k+13)-plicate Kayles.

Jack Kenyon discovered the period 349 for -156 and Richard Austin later found periods
142, 148, 442 and 1550 for -356, -055, -644 and -165. Table 9 exhibits the noteworthy
structure in these periods, except the longest, which you can find in Austin’s thesis. As you
can see, the second half of the period for -055 is obtained, with few exceptions, by nim-adding
5 to the first half. For similar reasons only half of the periods of -356 and -644 are shown;
you can get the other halves by nim-adding 7 to every value except the two values G = 16 in
-356. More recently the periods 149459, 144, 4 and 4 were found by Anil Gangolli & Thane
Plambeck for the games -16, -56, 127 and -376; the last exceptional values were respectively
for n = 105350, 326637, 46577 and 2268247,

The relationship between the structure of the period, if any, and the rules of the game, is
an intriguing one. Tom Schaefer has done some investigations into this. Omar will discover
numerous features: subperiods, reflexion, repetition, nim-additions, and . ..

Sparse Spaces and Common Cosets

In many take-and-break games some nim-values occur much more often than others. For
example in Kayles

0 and 5 happen only once each
3 and 6 only four times each, while

1, 2, 4, 7, 8
all occur infinitely often with frequencies
1 1 1 1 1

41 4r g2 * 6
It’s not too surprising that the small numbers 1 and 2 happen more often than 4, 7 and

8, but the reason why 0, 3, 5 and 6 occur so rarely is more subtle. Let’s look at the binary
expansions of the two kinds of value

common values rare values

...0001 =1 ...0000 =0
0010 =2 ...0011 =3
...0100 =4 ...0101 =5
L0111 =7 ...0110 =6
.. 1000 =8 ...1001 =9

..1010 =10
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To help you see the pattern, we've added 9 and 10 (which don’t occur) to the rare list. If
you've already peeked ahead at Chapter 14 you might recognize that the common values are
what we call the odious numbers with an odd number of ones in their expansions, while the
rare ones are the ewil ones, with an even number.

However, the property that interests us here is that just for these meanings of the words
rare and common we have

rare ¢ rare = rare = COommon i commeon,
rare -T- common = common = Ccomimon i rare.

There are other octal games which have different splittings into rare and common values,
but in each case the above relations hold, so that the rare values form a closed space under
nim-addition (the sparse space) and the common ones its complementary set (the common
coset).

How does this come about? Look at the nim-values

G(0),6(1),6(2),...,G(n—1)

for some take-and-break game. Suppose there is a way of separating all nimbers into rare and
common halves so that the rare half is a closed subspace under nim-addition which happens
to contain relatively few of the above nimbers. Then

G(n) = mexG(i) £ G(j) (#,7 < n)

taken over certain pairs (i,j) which depend on the rules of the game. In this most of the
excluded values will be

common f common = rare,
while a common value will only be excluded when just one of G(i) and G(j) is rare. G(n),
being the first value that isn’t excluded, is therefore likely to be in the common set.

A space that’s sparse so far
tends to remain so

So once the nim-values in a sequence begin to cluster in a suitable coset of common values,
this clustering is likely to persist. Often it shows itself much earlier than the ultimate periodity;
for example the first 25 nim-values of Kayles include 19 occurrences of 1, 2, 4 and 7, but only
six of 0, 3, 5 and 6, so that the sparse space is already quite well established.

A division of 0, 1, 2, ..., 2" — 1 into a sparse space and its common complement can be
extended to the numbers 0, 1, 2, ..., 2°+! — 1 in two distinct ways. Thus the division of the
first 25 Kayles values into

sparse: 0,3,5,6 and common: 1,2,4,7
might extend either to
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sparse: 0,3,5,6,9,10,12,15 and common: 1,2.4,7811,13,14
or to
sparse: 0,3,5,6,8,11,13.14 and common: 1,2.4,7.910,12,15.

However the first few values that exceed 7 are likely to be 8 because numbers larger than 8
can only occur when 8 is excluded, which would require a previous value of 8 or more. More
generally:

A new power of two
is quite likely to
establish itself as

a new common value.

So on the basis of the first 25 Kayles values it would be quite reasonable to conjecture that
there will be sparse space containing none of

1, 2, 4, 8, 16, ...

explaining the evil-odious division.

Will Grundy’s Game Be Ultimately Periodic?

The sparse space phenomenon was first suggested to us by our computation of the first quarter
of a million nim-values for Grundy's Game (divide any heap into two unequal ones). This has
a different sparse space, consisting of all numbers whose binary expansions, after deleting the
last digit, have an even number of ones. Thus

common rare

...0010=2 ...0000=0
. 0011=3  ...0001 =1
...0100=4 ...0110=6
L 0101=5  ...0111 =7

. 1000=8  L..1010 = 10
L1001=9 ... 1011 =11

The largest of the first quarter million nim-values for Grundy’s Game is 230 and among
them there are only 1273 rare ones. G(82860) = 108 is the only rare value of G(n) in the
range 36184 < n < 250000. Since our first edition, Mike Guy calculated 107 nim-values,
including G(7250049) = 256. This remains the only value > 249 with n < 47132748. Achim
Flammenkamp and also Anil Gangolli & Thane Plambeck found that the nim-value G(n) = 256
then establishes itself as a common value, appearing 3822 times for 47132748 < n < 54589100,
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and that rare nim-values 258 < G(n) < 265 occur for 13 such n, the latest being G(48399022) =
259. Dan Hoey finds that for all other n < 11 x 10, G(n) is a common nim-value less than

292.
If we suppose that the values remain bounded and that the rare ones die out absolutely,

as happened for Kayles and seems to be happening for Grundy’s Game, then the values must
ultimately become periodic, since the value of G(n) can be computed from the finitely many
nim-values G(n — r) for which G(r) is rare. We therefore conjecture that the answer to our

section heading is

YES!

Sparse Space Spells Speed

Naively, it would seem that to compute G(250001) would require 125000 nim-sum calulations,
but we can find the first unexcluded common value after only 1273 nim-sums and G(250001)
must be either this number or a smaller rare value. We can now proceed by computing further
nim-sums until either all the smaller rare values are excluded (which will probably happen
fairly quickly) or (just possibly) we have computed all 125000 nim-sums and established a new
rare value. On average we expect this method to find G(n) in only a few thousand operations.

We also computed values for the games
-0007, -00007, -000007

with the following results.

Smallest value of n for which G(n) =m

m 007 0007 -00007 000007

1 3 4 5 6

2 6 8 10 12

4 15 20 25 30

8 55 75 95 115
16 154 157 190 230
32 434 508 437 530
64 1320 1521 1257 1125
128 3217 5894 3368 2691
256 9168 22337 11776 5425
512 35662 65758 31700 15858
1024 109362 157185 86894 74667

apparent
sparse space 77 .. 11111000 ...77710000 ...11011110

John Stone has replaced our lost -007 column; he calculated 22! nim-values, which begin to
show a comparative stagnation. The maximum nim-value in this range is G(1683655) = 1314;
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the last new nim-value to occur is G(1686918) = 1237. The most frequently occurring nim-
value in this range is 1024, which occurs 63506 times; the second most frequently occurring
is 1026, which occurs 62178 times. There are 37 P-positions, of which the last occurs at
n = 16170.

Games Displaying Arithmetic Periodicity

If there are infinitely many non-zero code-digits in the name of the game, the nim-values are
usually unbounded and sometimes display arithmetic periodicity of the kind we saw in Lasker’s
Nim. In Table 10 we show all games -d 1dy (=-didadads .. ), d,d, (=-d1dad;ds . ..), and
4.d, (= 4d,did,d; .. ).

dy| 0 1 2 3 4 5 6 7 | 44,
d;
0 * * 02 02 04 05 02 02| =
1 * * 1212 02 14.i4 * 16.16 17 *
2 * * 2 3 24+ 25« p) P )
3 * * 32 P 34 * 32 2 | 43
4 £02 %17 02 17 02 17 02 17| 2
5 * « 5256 5357 54 * 56 57 | =«
6 %2 7.2 y) 2 2 2 2 2 2
7 * * 33 3 74 * 32 2| 47

Locator for Games -dldg, -ﬂldg and 4-(11 listed in Table 10.

Two entries in the same place in this game locator refer to the games -drdy and dldz,
smgle entry refers to both. An asterisk indicates bounded nim-values, for example 1, -5, -15,
15, .51, -51, 4.1 and 4-5 each have nim- sequence 0. 1; -31, -31, -35, .35, .71, -71, 75 75
each have nim- sequence 0. 12 while 05 20 21, 24 and 35 each have nim- sequence 0.01, so
they are first cousins of 107 .30, 307 50 and .70, which are each forms of She-Loves- Me
She-Loves-Me-Not; finally 4- 1 has nim sequence 0.01122.

The ? in the game locator means that the status of -61 is unknown; it has been analyzed
to n = 14999; it may have bounded nim-values.

In Table 10, -02, -04, -2, -24 and 4-3 are respectively Duplicate Nim, Triplicate Nim,
ordinary Nim, Double Duplicate Nim and Lasker’s Nim.
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cousins standard
game 3rd 2nd 1st form nim-sequence, from G(1) =1 p s
02 .02
02 ‘06 -06 .03 .03 13 ii(41) e 0.1122334455. . . 21
42 AW .07 .07 i3
4Q 4Q
-021{ 'gz } 007 0137 11337 i1i(+1) ie 0.111222333... 31
05 05 117 111222(+42) i.e. 0.111222344456667. . . 42
13 12 10022(+1) 21
14 14 100122224444(+4) 74
16 16 100223(+2) 32
17 4U 40 17 } 11223(+2) 32
41 A7
23 38 3.7
) 2T 2T 37 _
3 65 -6X 37 i(+1) L1
67 73
4.2 4-Q 73
-24 24 -307 1012(+2) 42
25 25 317 12123454(+4) 6 4
32 .33
33 3636 4054 9) 11
T2 .73
76 76
-34 34 .34 101232(+2) 32
52 53 10224433557688 AA99BBC(+8) 128
53 53 112244633557788AAC99BBDDEEG GIF FHHJJK (+8) 13 8
54 54 101222444(+4) 54
.56 56 1022(+2) 2 2
57 57 1122(+2) 22
74 T4 T4 10123245467 (+4) 5 4
2 i2 io(+1) _ 21
-id i4 101121232444466(+4) 74
-ié i6 102132445(+2) 32
4.3 4-3 1243(+4) 44
47 4.7 12(+2) 12

Table 10. Guide to Octal Games -d_{&z._ .d;ds and 4-d;.
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A Non-Arithmetic-Periodicity Theorem

We've just seen a number of take-and-break games with infinite recurring octal definitions,
which exhibit arithmetic periodicity,

G(n+p)=6G(n)+s, s>0

for all large enough n. Jack Kenyon noticed that this didn’t seem to happen for finite octal
games. Here's why!
As usual the rules of the game tell us that G(n) is the mex of certain values

G(i) +60).

where i4+j = n—c for one of a finite number of values of ¢. If the nim-values were arithmetico-
periodic then the ordinary sums
G(1) +G0).
would also assume only finitely many values, of various forms An + pu.
But we'll show that the number of different nim-sums

zty
among the pairs for which
rt+y=An+p
is very small compared with n. It follows that G(n), the first non-excluded value, would also
be small compared with n, contradicting the supposed arithmetico-periodicity.

The number, f(N), of nim-sums corresponding to a given ordinary sum N, can be read
from the diagonals of a nim-addition table (Fig. 13).

f(INy)=1121323143 5 2 5 3 4 1 5...
for N=01234567891011 12 13 14 15 16 ...

It satisfies

f2n+1) = f(n)
f2n) = f(n)+ fn-1),
and since one of n and n—1 is odd, we have
f(N) = fla) or fla) + f(b) where a<iN, b<iN.
It follows that
f(N)<3N?  (N=1,23,..)
where we define

0=0694... by (3)=0

and
oc=0618... by o*+o=1.

For after verifying the inequality at N = 1 and 2, we can continue inductively,

FIN) < fla) + f(b) < [(EN)" + (§N)7] = F(0N? + 0?N?) = {N°.

2
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/1/1/2/1/3/2/9’/1
N=20 /1 /2 /3 /4 /5 /6 / 7
N=1 /0 /3 /2 /5 /4 /7 s
N=2 /‘3 /0 /1 /6 /7 e
N=3 /2 / 1 /0 /7 e
N=4 /5 /6 / T e
N=5 /4 y T
N==¢6 /7 e
N=7 -
Figure 13. Read the Nim-Addition Table Diagonally for f(N).
Game Nim-sequence
-8 0.000(+1) First cousin of Triplicate Nim.
-9 0.1000122234445666783838AAACTCTCSESEG. ..
A 0.01 First cousin of She-Loves-Me, She-Loves-Me-Not.
B-DF 01 She-Loves-Me, She-Loves-Me-Not.
-C 0.00(+1) First cousin of Duplicate Nim.
‘E 0.01234153215826514. .. G(246) = 128,
18 0.1000012222344445666678838. . .
19 D.110[}[.}(_}2222334444556666888899AAAACCCC77. .
1A 0.100122(+1)
1B 0.110022(+1)
1C 0.100102222444466668883333A. ..
1D 0.11012222444466668333. . . G(240) = 128,
1E (0.1001223445667883. ..
AF 0.1102234456673885. .. G(207) = 128.
38 (0.101021010232345343456. . . G(301) = 128,
-39 0.12010120345343478. .. G(164) =77.
3A 0.1021023453456876. .. G(190) = 121.
-3B 0.1201203453456T86789A. .. G(206) = 128.
-3C 0.10120103234534547678. . .
3D 0.120103453426276. . .
-3E 0.102102345345768. . .
-3F 0.12012(+3) Kenyon's Game: take 1 from a heap or take 2 and

leave the rest in any number of heaps up to 3.

Table 11. Hexadecimal Games are Even More Unruly than Octal Games.
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Some Hexadecimal Games

The hexadecimal games are those with one or more code digits dg, 8<dp <15 (compare Table 4). This
usually leads to larger nim-values. Jack Kenyon showed that a few of these games are arithmetico-
periodic, including -3F (F=15) which has a period of 6 and saltus 3, countering a conjecture of Guy &
Smith that the saltus was always a power of 2. Richard Austin found some rather restrictive conditions
under which such games are arithmetico-periodic, but usually they seem even less disciplined than
octal games. A few examples are given in Table 11: the notation is as in Table 10. Enough nim-values
are given to confound your early guesses about the behavior of the games.
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Numbers, Nimbers and
Numberless \Wonders

Acquaintance I would have, but when't depends
Not on the number, but the choice of friends.

Abraham Cowley, Of Myself.

To numbers I'll not be confined.

Sir Charles Hanbury Williams, A Ballad in Imitation of Martial.

Domineering

This game has been considered by Géran Andersson and has also been called Crosscram and
Dominoes. Left and Right take turns in placing dominoes on a checker-board. Left orients his
dominoes North-South and Right East-West. Each domino must exactly cover two squares of

Figure 1. A Game of Domineering.

19
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the board and no two dominoes may overlap. A player who can find no room for one of his
dominoes loses.

After a time the available space may separate into several disconnected regions, and then
the game for the whole board will be the sum of several smaller games corresponding to these.
In Fig. 2 we display values of all regions with five squares or fewer. A square may be added
to any one of the indicated edges without affecting the value of the region. Some other values
are given in the Extras to this chapter.

o] [« [ ILi_JI L -2 |

_ { —

1 |*§ iﬁ 1E

_ o] [a] # |
2 ﬁg‘j l?@ -.ltl |-1

— E?ﬂ - e
. T_ &L_i 1|o

LDEI@IIE °

Figure 2. Values of Domineering Positions (+1 means 1 | —1).

We discuss some of the more interesting simple cases. The positions

- ; ={0]0} ==

- —{-10]1) = }
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yield two old friends, but we also find some new values:

Il

={1]-1

Il

={1]0}

How shall we reckon with these?

Switch Games

In a position {z | y} where z and y are numbers and = = y, each player will be keen to
move first, since he prefers the effect of his own move to that of his opponenent’s. Although
this feature is common in real-life games we have tended to avoid it in our carefully chosen
examples. How do such switch values compare with ordinary numbers? As a more interesting

example we consider = {2 | —%} in which Left’s best move is to H + |E| = 2, and

Right’s moves lead to positions like I iof value —%, the negative of [ | =

If z is a number, Left's best option from {2 | —%} — z is to 2 — z, and so he can win only if
z < 2. Right’s best option is to —% — z, so that he can win only if z > —%. We conclude that

b3 =

for z > 2, z>{2| -3}
for z < —1, z<{2| -1}
for —1<2<2, 2| {2]-3}

as illustrated in Fig. 3.
More generally:

If # and y are numbers and = > y, then for any number z:
z > x implies z > {z | y},
z < y implies z < {z | y},

y <z < x implies z || {z | y}.

COMPARING NUMBERS WITH SWITCHES
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2 -

Figure 3. Where is [{-]] = {2 ‘ —Ly?

Cashing Cheques

Figure 4 shows the usable regions of the Domineering position of Fig. 1 with their values. Who
should win?

1 -5

{o] -1}

e les

Figure 4. The Available Regions of Figure 1.

More generally, how do we cope with any sum of values each of which is either a number,
z, or a switch {z | y}? In particular, what happens for the game {z | y} + 27 It is easy to
guess the answer:

If =, y and z are numbers, and = > y, then each player
should prefer to move in {z | y} rather than in 2.
In symbols
{z|yttz={z+z|y+2z}

ADDING NUMBERS TO SWITCHES

This is also easy to prove, for since {z | y} is less than any number strictly greater than z,
Left’s other option {z | yr+ 2% will be less than any number greater than = + 2%, and so less
than his sensible option & + z. So for example we have

2-pes=]4)  2]-H-1-0 -1
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We can use this principle to eliminate the bias from any value like {z | y}:

If # and y are numbers with « > y, then
{z |y} =u+{v]| v} =utw,say
Lo+ y)o = Ha - ).

CENTRALIZING SWITCHES

where u =

So any sum of such terms reduces to the sum of a collection of terms of form {v | v} for
various v, together with an ordinary number. We shall write +v for {v } v}, and more
generally

ztaxbtet...
for

z4{a| —a}+{b| b} +{c|—c}+...

We may think of a position of value +v as a cheque for v moves, payable to whoever moves
in it, while the ordinary number term represents the difference between the bank balances of
Left and Right.

In the game of Cashing Cheques, each player starts with a sum of money, and there are a
number of cheques (or coins) on the table, already made out for various amounts. The players

The Eagunr g o7

1000 frus moves

N
v, iy e CASHIER.
Feptehord

Figure 5. Some Cheques Ready for Cashing.
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alternately appropriate these cheques, and at the end of the game the winner is whoever has
the larger amount of money in all, except that if both have exactly the same amount, the last
to cash a cheque is the winner.

No worldly reader will have much difficulty planning his moves in this game. Obviously,
whoever goes first will grab the largest available amount, his opponent will grab the next
largest, and so on until we find ourselves fighting over the quarters. So the game

z+at+btet... (a>b>ec>...20)

will soon become
z4+a—-b4ec— ...

if Left starts, and
z—a+b—cH+...

if Right starts. Moreover, we can tell whose turn it is to move next, for the number of moves
made so far is simply the total number of terms of form +v. Knowing this, it is easy to see
who wins in any particular case.

There is no need to reduce the switches {z | y} to the form u £ v before applying this
method. Since the value of v is 3 (z — y), which we call the temperature of {z | y}, the policy
is simply:

In any sum of switches {z | y}, together possibly with a number,
move in any {z | y} having the largest possible temperature 3(z — y).
When the dust has settled after these moves the result will be
a number which tells us the winner. Of course, when this number is 0,

the outcome depends on whose turn it is to move.
THE TEMPERATURE POLICY FOR SWITCHES

The values in Fig. 4, arranged in decreasing order of temperature, with the number at the
end, are

2] =3} {1 -1}, {0] -1}, {0 0} and £.
So if Left starts, after four moves we reach the number

2-140+0+%=1%2
while if Right starts, the opposing four moves lead to
1 3 _ 1
—5+1-14+0+ %=1
Since both numbers are positive, so is the whole game, and Left can win no matter who starts.
Suppose however that Left stupidly moves in the bottom left-hand corner, so converting

the region of value 3” to [}, value % Will Right be able to win if Left makes no other lapses?
|

No! Although Right is better off, in that the value after four moves will be 0 rather than

%, he will still lose because it will be his turn to move. What would have happened had Left

instead made his first move in the top right-hand corner, so creating a second region of
value +£17




h Some Simple Hot Games 125

Some Simple Hot Games

Positions like the ones we've just been discussing, in which both players are eager to move,
naturally make for exciting play and so may be called hot. Thus £1 is hot, but £1000 is
hotter still, indeed it has a temperature of 1000° on the natural scale. Some new hot values
appear in the positions of Fig. 6. They are all of the form {z | yx}, {z= | y} or {z= | y#*}, with
z > y. The temperature policy we laid down for sums of ordinary switches {z | y} extends to
include these: we still move in the game with the greatest temperature %(J‘: —y). But some
care is needed if two games are equally hot.

value {2 | * } value {1 | *} value {% | *} vall.g{l* | 0} wvalue {1« | —Ix}

Figure 6. Heat Associated with Stars.

We have the identities:

{z |y} +*={zx | yx} (x 2 p)
{z |y} 4= {2 |y} (2 > p)

So the value of the last region of Fig. 6 can be written in several forms:

={b | —=1x} = £(1¥) = £1 + = = +1x, say.

The Tiniest Games

The value of the position

| [ |1

| _.
—{ 0, 2|0} | {o] -2} {i]-2})

simplifies on bypassing Left’s reversible move and omitting Right’s dominated one, to
{o]{o] —2}}.

It turns out that this value, though positive, is very small indeed, much smaller than 1, and

we shall write it 4+ and pronounce it “tiny-two”. More generally there is a game “tiny-z",

namely

+2={0[{0] —x}}
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for any value z, and as = gets larger +, gets smaller, very rapidly. Indeed, if + and y are
numbers with > y > 0, then +, is so much smaller than +, that no matter how many terms
+2 we add to each other, the sum will be less than +,. So any multiple of +1 will be less
than 7, for we have

o= {0]{0]0}} = {0 | 5} =1.

The negative of +, is, of course

—={{z[0}]0}.

We may pronounce this “miny-z"! For sums involving tinies and minies we use natural
abbreviations, thus

o=1+(+2)=1+{0|{0|-2}}={1|{1|-1}} = {1 | x1}
%-%=%+( D=3+ {00} ={{&]|3}]3}-

Modern Management of Cash Flow

The tiny game
+500 = {0| {U | "'5[]0}}
may be interpreted as a clause in the fine print of a contract which reads:

If Left has not yvet filed form XYE, then Right may issue a formal
regquest that he do so. After auch a request has been izsued, on
any subsegquent turn on which Left has still not filed the form,
Right may file a decree compelling Left to forfeit a penalty of 500
moves,

The reason that this clause gives no competitive advantage to Right is that issuing the request
requires just as much effort (one turn) as filing the form. In fact, careful analysis reveals that
the clause gives a tiny advantage to Left, because he has the option of filing the form even
before it’s requested. Not surprisingly, the amount of this tiny advantage decreases rapidly
with the increasing value of the penalty which may be imposed for failure to comply with the
formal request.

In a sum of tinies and minies, each player emulates the modern businessman who is quick
to bill but slow to pay, even though the effort required to issue an invoice is the same as the
effort needed to write a cheque. The optimal cash management strategy may be to postpone
payment of every bill until the prospect of a penalty is imminent. Every payment is made
just prior to its deadline, so no penalties need ever actually be invoked. Thus, issuing a
formal request which threatens the opponent with the prospect of a larger penalty always
takes precedence over responding to any outstanding smaller threat. In any well-played sum
of tinies and minies, the games are completed in order of increasing magnitude.

The tinies and minies receive the highest priorities because they are associated with the
transactions involving the largest potential penalties. In the end, the outcome of the sum
depends only on the sign of the largest component. The winner is the accounts-payable man-
ager who can set the longest record for slow payment while still avoiding any penalty. The
explanation for his success is that he holds the purchasing contract on which the penalty for
late payment is minimal.
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Tiny Toads-and-Frogs

We return to the game of Toads-and-Frogs and consider some positions in which the numbers
of toads and frogs need not be equal, but each lane has just one empty space. The (/,7) game
is that whose starting position is

ool FGIO S )

e

resulting from Right’s first move in the (3,2) game has the value —1 and other tiny and miny
values arise from longer Toads-and-Frogs positions. Let’s see how this comes about.
First observe the
DEATH LEAP PRINCIPLE

If the only legal moves from some position

are jumps, the value is 0.

This applies just when there is neither a toad immediately to the left of the space, nor a frog
immediately to its right. In such positions the first player's later moves are also necessarily
jumps and always clear a space for his opponent to reply. Now we can deduce that

the value of any position of the form

is —;, where z is the value of the position

obtained by making two toad moves, or is

—% (= —_2) if only one toad move can be made.

Figure 7 illustrates this.

The Opening Dissection of Toads-and-Frogs

We can now evaluate the initial position of any game (I, r) of Toads-and-Frogs with one empty
space.
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0 (Death Leap Principle)

Figure 7. Miny Toads and Frogs.

Trivially:

If » =0, the value is [.

However,

If r=1and ! > 1, the value is

{{i-2|1}|o0}.

This is proved (for [ > 2) by Fig. 8. In fact the same figure proves the more general result:

The position

a m 4

%

The remaining initial positions are covered by

If r = 2, | = 2, the initial position

of (I,7) has value *.




The Opening Dissection of Toads-and-Frogs

_/_{“_2“}'0} \

15

0 (Death Leap Principle)

Figure 8. A Lone Frog Faces Toads.

The skeptical reader should play the game

Iy
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as second player, always playing in the Toads-and-Frogs component if he can. He will find
that after a few moves the Death Leap Principle applies.
Our results on initial positions are summarized in Table 1. To save space we have omitted

the braces, writing 1+ | 0 for {1x | 0}, etc. Since 2

1 | 0 would be ambiguous we have

introduced || (“slashes”) as a stronger form of | Thus 2 | 1 || (0 means -{{2 | 1} | {)}, whereas
2| 1|0 would mean {2 | {1|0}}.

r=0 1 2 3 4 5 6
Il=010 1 _9 3 4 5 6

1 1 0[-3 0|-1x 0f-1]-2 o0f|-1[-3 0f-1|-4
2 2 % |(} * * * * *
3 3 1x|0 * *
4 |4 2|10 * *
5 |5 3[t]o * *
6 |6 4|L]o0 * *

Table 1. Initial Values for Toads-and-Frogs.




130 Numbers, Nimbers and Numberless Wonders [ Y

In the Extras to this chapter we evaluate a number of other Toads-and-Frogs positions.
The position

with two empty spaces has value {% |L} Our policy about playing in the hottest game still
applies to sums involving such values, but it can be hard to make the correct choice when
several components are equally hot.

Figure 9 shows a Toads-and-Frogs position chosen so as to make these ideas clear. We
suppose that it is Left's turn to move. To help him we have appended the values (see the
Extras to this chapter) and arranged the lanes in decreasing order of temperature. What
should he do?

value temperature §(z—y)
T|[T|F F|F x| -1 1
FlT|T F ~1] -1 1
T|F|T F|F 0 -1 5
T|T F|F Ly L
FIT|T T|F 1| 1=1x 0
T T F|F|T 0 | * =T 0

Figure 9. Left to Move and Win.

There is no room for doubt about the first moves of the two players. Left moves from the

hottest game = | —1, to %, and Right then converts the next hottest game, -—% | —~1, to —1.
But now Left faces a dilemma, since the next two games, 0 | —ﬁ and i |J, are equally hot.

If Left moves in 0 | —i and Right in % |J,, the value will become

* =140+ | +1x+ =0,
a win for Right, as the most recent mover. But if instead Left moves in ﬁ H, and Right in
0 | —-%, the value will be

*— 14§ — L+ 1x+1=1,

a clear win for Left. We might have guessed this, for since the difference between % and |
is greater than that between 0 and —i, the value i |L is really just a little bit hotter than
0 | —-i, and should perhaps have been placed above it. But neither of 1 | # and 0 | —1 can be

considered hotter than the other, for in their sum

{1]=}+40] -1}
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Left should prefer to move from the latter and Right from the former. Find the best starting
move for each player from the 3-lane Toads-and-Frogs position of Fig. 10

F|T F|F|F value 0 | —1=
F FI|T value —1x
T|T|T T|F value 2 | 1

Figure 10. What Are the Best Moves?

Positions involving tinies and minies can be even more difficult, and the temperature pol-
icy may suggest the wrong move. If Left starts and both players apply the temperature
policy from

value temperature

T F|T 5|0 i
T|F|T F 0f-3 s
T T|F F +1 0
T|T|F F -1 0
the value after two moves will be
b-day -ty

a win for Left.
However, if Right had responded to Left’s opening by moving from

1
+1={0[{0] -3}
to 0 | — % the resulting value would have been
1 1 1 1
{0 - +{0] -3} -1
which after two more moves becomes
1 11 _
3+0—5—5=0,
a win for Right, the last mover. We can say that + 1 possesses latent heat since it has the
hot option 0 | —i. The temperature policy works with games whose options are like
z, z+=* x+T, x+#2, z+T+=
for any number x, since these have no latent heat.

Seating Boys and Girls

Let’s have a children’s party to celebrate the end of this chapter. Left will seat the boys and
Right the girls round the table shown in Fig. 11. To preserve decorum no child may be seated
next to another of the opposite sex. Whichever of Left and Right is first unable to seat a child
must cope with the angry parents.
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Figure 11. Where Does Left Seat the Next Boy?

This is rather like the game of Seating Couples from Chapter 2, with the difference that
a player’s move effectively reserves the adjacent seats, if empty, for him rather than for his
opponent. We use

LnL for a row of n empty chairs between two boys,
RnR for a row of n empty chairs between two girls, and
LnR for a row of n empty chairs between a boy and a girl.

The values are computed using the equations

LnL = {LaL + LbL|LaR + RbL}
RnR = {RaL + LbR|RaR + RbR} (= —LnL)
LnR = {LaL + LbR|LaR + RbR} (= RnL)

where a and b are any numbers adding to n—1 except that LOR and ROL are illegal. These
look like the equations for Seating Couples (Chapter 2). However, the values are hotter, as in
Table 2.

n 0 1 2 3 4 5 6
LnL 0 1 2 2/0 3|« {4]0,£1} {3|«}+1
InR — 0 & +1 +2 42+ +2+1

RnR 0 -1 -2 0|-2 «|-3 {£1,0]|-4} {x|-3}%1
Table 2. Values of Positions in Seating Boys and Girls.

In Fig. 11 can Left win?




Extras

In Fig. 10 the only good move for Left is in the first lane and the only good move for Right is
in the last.

Left cannot win the position R5R, R4L, L3R in Seating Boys and Girls shown in Fig. 11.
The value is

{£1,0| -4} £2+1.

If Left plays in the first component (seats a boy on the far side of the table) Right seats a girl
by the near jug of lemonade, while if he seats a boy anywhere else, Right seats a girl opposite
the far jug, securing four more seats for girls.

Toads-and-Frogs Completely Dissected

Figure 12 represents the moves from the general initial position (I,r) in 1-space Toads-and-
Frogs.

A1r)
T/ F
AT ‘
12 TE \T]\ Faay
)(T:\FA, ,]_2& ¥, -1
0 N L 1y
TI F.i‘ ,‘TB "'J
B s T
<Ta Koot 0 /Tll\Fj
‘(T-t F o 0 /\f:\ﬂ,
4 TN T F, 4
0 KT{‘FJ i °F, %0
0" TE, TiF, ‘0
oF =
T, °F, TF, 0
- A W * Aa
IR Csroes TR
ot *0 o TR
- ¥ .
' F, o 0 T'F
y v
LR 0 0" R
Th F; 0 U T| Fﬁ
I-6 KTE F, j;\FS "1
P -
0" Tk Jeas *0
A -~
0" TR, TE 0
0 S

Figure 12. A General Analysis of 1-space Toads-and-Frogs.
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Each edge is labelled so as to show exactly which creature makes the corresponding move
(the creatures of each species being numbered from the initial space outwards); a circumflex
indicates that the move is a jump. There are only two ways of leaving the main zig-zags of the
figure: the positions marked 0 are instances of the Death Leap Principle, and those marked

with the integers
-2, 1-3,1-4, ... or 2-r, 3—r, 4d—r, ...

are cases in which only toads or only frogs are able to move from now on. The values in any
particular case can be found by omitting moves which would be made by non-existent animals.
Figures 13 to 16 illustrate the cases (I,7) = (2,2), (3,2), (4,2) and (3,3), which together with
(1,1) (which we have already discussed) and their negatives suffice for positions with up to 7
places and only 1 space. Dead animals, no longer able to move, are indicated by lower case
letters. Positions where further application of the Death Leap Principle has been made are
boxed. TTOFF

/ * \ Figure 13.
5-place Toads-and-Frogs

TOTFF TTFOF (Of course, this is an abbreviated
/ T \ / v \ form of Fig. 8 of Chapter 3.)
Ottff TFTOF TOFTF ttfO
0 / * \ / * \ 0
|troTr| [TrTFO|  [oTFTFR| [TFOTE] TTTOFF
TTOTFF TTTFOF
/ 1]+ \ / —1 \
a
T Ottt TTFTOF TTOFTF tttf O

1 / * \ /i |0 \ 0
[rrroTF] [TTFTFO]  TOTFTF

0 0/5\0

Ottftf TFTOTF
’ / : \
Figure 14. (3,2) Toads-and-Frogs. TFTFTO
(Note the appearance of —1 after Right’s first move.) 0 / 1

0




Toads-and-Frogs Completely Dissected

TTTTOFF Figure 15. (4,2) Toads-and-Frogs

/ * \ (We obtain the figure for the

position (I,2) with larger I on

TTTOTFF TTTTFOF replacing the bold figures 2
/2|* \ / 1|%\ and1byl—-2andl—3
respectively.)
TTOttE TTTFTOF TTTOFTF ttttfO

2 /\ /H%HO\U
|[TTTFOTF| [TTTFTFO| TTOTFTF TTTFOTF
0 0 / 1)1 \ 0
T O ttfef TTFTOTF

1
1 / : \
TTF Ottf TTFTFTO
0 / 1
TTTOFFF TTFTF Ot

/ *\ 0

TTOTTFF TTTFOFF
PALIENg
(by symmetry)
T Ot TTFTOFF

1 / 0 [ 4= \
0 [l Figure 16. (3,3) Toads-and-Frogs.
/ \ (The value {1+ | 0 will occur again
TTFOFTF SO in Bynum'’s game of Eatcake in

/ l \ 0 Chapter 8.)
TOFTFTF
/ ¥ \ 0
| OTFTFTF| |TFOTFTF |
0 0
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Toads-and-Frogs with Two Spaces

In general one can play (I + ¢ + r)-place Toads-and-Frogs from the starting position in which
! toads are separated by ¢ spaces from r frogs; we call this the (I,7). game, where we have
omitted ¢ when it is 1. Figures 17, 18 and 19 show the positions arising in one lane of each of

TTOOF . .
1 \ Figure 17. The 5-place Toads-

//TDTDF TTOFO and-Frogs Game (2,1)s.
1 \ / 1% \

TEIEITF EITTEIF EITFEI TTFEIEI
I:ITEITF TOFTO OTTFO ToOOFt TFTEII:I
2N ‘//lé Ve L
)
O ottf OTFTO TOFOt OTOFt TFOTO
0 1 \ 1 _/ 2
2 2
Figure 18. The 6-place Toads-
OTFOt frToTo OFTTO TFOOt and-Frogs Game (2,2)2.
0 3 1 1
TToOOFF
/ *
TOTOFF TTOFOF
LN [,
(by symmetry)
OTTOFF TOOTFF TOTFOF
/TW \\.
I:I'TEITFF OTTFOF 'TEIEIFTF TOFTOF _ TFTOOF TOTFFO
_1 1
PSS G ONYY
EIEIttﬁ OTOFTF OttffO OTFTOF TOFOTF TFOTOF TOFTEFO
I S
OOTFTF OTFAOTF fTOTOF OTFTFO TFOOTF TOFFTO
I i NV
0O OFttf fTOO0TF OFTOTF, OTFOFt OTFFTO fTOTFO TOFFOt TFOFTO

R N N &

oFOttf foTOTF OFTFTO OTFFOt  fTOFTO
-1 é/ 0 \ 0 13

OFTFOt fOTFTO
-1 1
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TTTOOF
2 \
TTOTOF TTTOFO
./.7 NN
TOTTAOF TToaoTk TTOTFO TTTFOO
//2*% % 2 X3
OTTTaF TOTOTF TOTTFO TToOOFt TTOFTO TTFTOO
S AL L N

OTTOTF ToOOttf OTTTFO TOTOFt TOTFTO TTOFOt TTFOTO

OTOttf OoTTOFt OTTFTO TOTFOt _TOFTTO TTFOOt TFTOTO
1 %’n / 1 ‘// 21 %/4
OTTFOt OTFTTO TOFTOt TFTOOt  TFOTTO
S N V/ 3
OTFTOt froTTO OFTTTO TFOTOt
1 1 2 2

Figure 19. The 6-place Toads-and-Frogs Game (3, 1)2.
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the 2-space games (2,1),, (2,2), and (3,1),. Options are shown except where values, or their
negatives, can be quoted from elsewhere, e.g. from Fig. 16 of Chapter 1 (the (1,1)s game),

Fig. 8 of Chapter 3 (the (2,2) game), or Figs. 13 to 16 in this chapter.

An incarnation of Omar is Jeff Erickson who has considerably extended the results of Table
3 of values of starting positions for some (I, 7)o games. Erickson also gives the very complicated

values for I = r = 4, 5 and 6 and conjectures that for [ > r > 2 the value is [—3

r=0 1 2 3 4 5 6
=0 0 -2 -4 -6 -8 ~10 ~12

1 2 0 -1 -2 -3 —4 -5

2 4 1« o0|-% 0f-2 0]-2 0|-1
3 6 2 3|0 £3 | —1x | -2+ 1 —3%

4 8 3 2]0 1|l

5 110 4 [0 2+[L 2|1 «x]|-1

6 |12 5 Z|o 3«[l 3|2|«|[-1 3|1]«]|-2

7ol 6 flo all 4fs]s-1 af2]x| -2 4|1]«]-3

Table 3. Values of Starting Positions in (I, r); Toads-and-Frogs.

l—r || * | 3—r.
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More Domineering Values

Values for all positions with six and seven squares are shown in Figs. 20 and 21 and values for
some larger positions in Fig. 22. These results are partly quoted from ONAG where some of
them are explained. The following ideas are useful:

(i) If from some position, Left has an option of value n and it is impossible to pack n + 1
vertical dominoes into the region, then n is Left’s best option.

(ii) The value of a position is unaltered or increased by cutting it along some vertical lines;
it is unaltered or decreased by cutting it along horizontal lines.

(iii) If
G =
then
= +
G H H
For example, since E = , we have

Care must be exercised in making multiple use of this principle; a square may be added to any
one of the double edges in each position of Figs. 2 and 20 without affecting the values of the
position (there are 3 cases where a square may be added to two double edges simultaneously).

Figure 20 gives the values of all the 35 6-square regions; note that if a region is turned
through a right angle its value changes sign. There are 108 7-square regions. The values of
30 of these are the same as those of appropriate 6-square regions, the 7-square regions being
obtained by adjoining a square to any one of the double edges in Fig. 20. Figure 21 gives the
values of 58 other 7-square regions. The remaining 20 are obtained by rotating the sets of
squares marked with circles about the axis drawn through one of the circles.
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More Domineering Values
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ing Values for All 6-square Regions.
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Figure 20. Domineer
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Figure 21. Domineering Values for 7-square Regions.
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Table 4 gives the values of m x n rectangles in Domineering. This has been much amplified by

David Wolfe, using his Gamesman'’s Toolkit; he has also corrected errors in Figs. 21 and 22.
n=1 2 3 4 5 6 7 8
m=11[0 -1 -1 -2 =2 -3 -3 -4
. 1 L 1 1 1
2 |1 +1 2|-3 -2 3 1-|-1 13]-3 2— 0] -3] -2
3 1 Z|-2 +1 -1 -1 -1|-3% -3|-3 —3|-3]|-3;]|-53
4 |2 +2 13 a 1 b 1 {13]0] -2]-2}+¢
50 ]2 -3 1 -1 0 ~13
6 |3 1|-142 33|1 b 13 £l+d
1 b1 3 -
T3 ozl 3 1

where —2f < a < 2t, -4t < b < 3t, -2t < ¢ < 4t, —6f < d < 6t with £ = 4.

Table 4. Values of Rectangular Regions in Domineering.

Figure 22 gives values for some miscellaneous regions with eight or more squares, while

Fig. 23 shows some interesting sequences.

The impartial version of Domineering, in which either player may place his domino in either
orientation, is discussed in Chapter 15 under the name of Cram.

3 ]

i

ﬁq
o
e

0 4

i
e ] [
Eiﬁ%%
i 1

i

L[ b

[+

Figure 22. Domineering Positions with 8 or more Squares.
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A A st 'Lm—umJ m;w
& naaE
TG

pen.od.z(orpmod.m:td,

Po-*n ______
I iy Byl =

=1 [ U ) o
P [ [y o B B
Uy s e B
g L!"—U"r U U"U—]

The fest four sequances have

A [ [ o

0@ 0 [ (] e [

e L e e Ly oy
P o AP S e

Figure 23. Some Sequences of DOlnlnPPllll"' Positions.
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The Heat of Battle

When the hurly-burly’s done
When the battle’s lost and won.
William Shakespeare, Macheth, Li 1.

. not without dust and heat.

John Milton, Areopagitica.

When you're playing a sum of cold games there’s not much of a problem. Their values will he
numbers, every move gives something away and you just have to tot up the numbers to find
the least disadvantageous move. When the hot games are switches with only cold options, as
in Cashing Cheques, you just move in the hottest game. But if you're in a really complicated
battle, and things are likely to stay hot for quite some time, then you’ll have a hard job
deciding what to do. This chapter will give you some help in coping with the heat.

Snort

This is a game introduced by S. Norton in which there are many hot and complicated positions.
On alternate weeks Farmer Black is in the bull market buying black bulls, and in the intervening
weeks Farmer White will be found buying white cows. They jointly rent a certain farm and
intend to put each herd in a separate field. Of course they mustn’t put bulls and cows in
adjoining fields. That farmer loses who is first unable to find a suitable open field for his latest
purchase.

You can play this game like the map-coloring game of Col, introduced in Chapter 2. The
difference is that in Snort adjacent fields may not be used by opposing players, whereas adjacent
regions of the maps in Col were not available to the same player.

A Graphic Picture of Farm Life

Figure 1 shows a farm as it might look after Farmer Black’s second purchase. The two hlack
fields hold bulls, the white ones hold cows and the shaded ones are still empty. to get a clear
idea of what is going on let’s put a dot (@) in each field that is still available to both players,
a black spot (.) in one usable only for bulls, and a white spot (O) in one open to cows
only. There's one field that’s not available to either player since it’s adjacent to both bulls and
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Figure 1. Snort Farm After Farmer Black’s Second Purchase of Bulls.

cows, and we've indicated this in Fig. 2(a) by the piebald spot (). These dots and spots
are now joined by lines indicating adjacency of fields.

(a) (b)

Figure 2. Reducing the Problems of Farm Management.

So Fig. 2(a) contains all the information of Fig. 1 in a more perspicuous form. We can
further simplify such figures by

omitting any piebald spot,
omitting any (thin) line joining similarly colored spots,

as in Fig. 2(b), since the omitted things have no further effect on the game.

To play Snort directly on these simplified graphs, Black, when he takes a node, should
add a black coloration to all neighboring ones. This is in addition to any coloration already
present, so that a white node will become piebald and can therefore be omitted. Of course,
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similar remarks can be made for the other player; for instance if Farmer White now puts cows
in the lowest field available to him we get Fig. 2(c), simplifying to Fig. 2(d).
Figure 3 contains the values of a number of Snort positions that can be found this way:

@o—o— ®—o—e {2/-1} | +1
—@—o—o = i t+{1l} 2|1||-1+
—9 Q| +—® O {10} +1 | -1 "

—99 —@— {1|0}-i 1 +1

In the Extras you'll find a more extensive Snort dictionary from which many of the examples
for this chapter have been taken.

o x 00 19 e 1(7|]) @O 2| 1.
® 1 @3 @03 . @ o (e 1],
@) 1 @ 02 @ 0 | 1.0 o o
— 1) O+ 0200+ 0 ;. — @ O i«
O | |00 =] @0 O—(—0— 2,
O—o -1 @0 +1 O—C—@2 .
O CO: 60U 01000 @0 0 U2

Figure 3. A Short Snort Dictionary.

Don’t Move In A Number Unless There’s Nothing Else To Do!

When you're playing in a sum of games with values of different types, it can be quite hard to
decide where yout best move lies. But since if  is a number in simplest form, we have

xt < 1< :IYR,

each player makes himself worse off by moving in #. So when considering which component
to move in, you should always prefer the non-numbers:

DON'T MOVE IN A NUMBER
UNLESS THERE'S
NOTHING ELSE TO DO!

THE NUMBER AVOIDANCE THEOREM
You'll find a more formal proof in the Extras. More generally the obvious question to ask
when comparing moves in different components is
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What's in it for Me?

For example, if Left makes the move from G to G then what’s in it for him is the amount
Gh -G

by which the value is increased. On the other hand, Right, who’s trying to keep things down,
gains

G- GE

by moving from G to GF, since this is how much the value is reduced. So we’ll call the various
differences
GL-G and G-GF

the (Left and Right) incentives of G.
Looking at various numbers in simplest form, for example

1={0]}, 25={23), &={iO},

you can see that the incentives

g and T—x

are found among the negative numbers

1 1

1
_11 T a’ »
2 4 8

explaining why each player feels a disincentive to move from z. But we'll see that from any
non-number, each player has an incentive which is almost positive, being strictly greater than
all these negative numbers.

For example, 2|—1 isn’t a number, but 1% = 1|1% is. and so we have

{2]-1} + 13 = 333,

since the players won't consider the moves to
{2/-1} + 1 and {2|-1} + 13

because they know the number avoidance theorem.
More generally we have

THE TRANSLATION PRINCIPLE

If G = {GF|GFY} isn't a number
and x is, then
{GL|GR} + z = {GF + z|GF + =}
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because
G+z={Gl +z,G+=zL | GR +2,G + 2%}
and, by the Number Avoidance Theorem, the options

G+zF and G+ 2f

are dominated.

The Snort position G= o0
is hot because Left will move to @ ®
with value 2, and Right to (7) O

with value —1, but whichever of these two positions is reached, neither player would like to
move in what remains because their values are numbers. We call 2 the Left stop of G, and —1
the Right stop. And because G satisfies the equation

G+G=1,

we might say that it has a mean value of %
Similarly the game

H= o—@—o—o =2|1|-1x

has a left stop of 1, a Right stop of —1, and has a mean value i because it satisfies
4-H = 1.

In this case the mean value is not the average of the Left and Right stops. How do we compute
the stopping values and the mean value for an arbitrary game which doesn’t seem to satisfy
any convenient little equation?

The Left and Right Stops

The Left and Right stops are easily found. Let us agree to stop the play of any game when
its value becomes a number. Because moving in numbers is bad for you this doesn't have any
effect on intelligent play. When all the components have become numbers sensible players will
stop playing altogether and just tot up the score! So the positions of a game whose values are
numbers become stopping positions with this rule. The ones whose values aren’t numbers may
be called active positions since the players will still want to move in them.

When an active game such as

G= @—eo—o—@—o =320+l

is played together with some other games that have already stopped at numerical values the
play will concentrate in G until it also reaches a stopping position, x, say. Left should try to
make x as large as possible, and Right to make it as small as possible. In this case, if Left




150 The Heat of Battle [ Y

R{G =10} LtGH-Ri2)

-4

numbers less than G numbers conlused with G numbers greater than G

Figure 4. The Left and Right Stops and Confusion Interval of 3|2 H 0,+1.

starts, ¢ will stop at value 2 with Left to move, while if Right starts, ¢ will stop at 0, again
with Left to move. We indicate this situation by writing

L(G)=L(2), R(G)=L(0)

By playing a general game @ in this way we define the two numbers which we call the Left
stop and Right stop of , and also find who is to move when these stops are reached. We
then know how G compares with all numbers, because the cloud for G in Fig. 4 crosses the
axis at the Left and Right stops on the sides determined by whose turn it is to play. In our
example the cloud passes to the left of 0 and to the left of 2. The region between the Left and
Right stops (covered by the cloud in our figures) is called the confusion interval.

Figure 5 shows the confusion intervals of

l=0]olo, « =010, t=0/0]0
for which we have

L) =R() = L(0);  L(x) = R(0), R(x) = L(0);  L(1) = R(1) = R(0).

Figure 5. The Confusion Intervals of Down, Star and Up.

You can see that a confusion interval may contain just one point, or be empty, in several
different ways. In each of these cases, the game is infinitesimally close to a number.
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Cooling—and the Thermograph

A game which is confused with a large interval of numbers is hot and both players will be
eager to move in it, To find its mean value we should try to decrease the confusion by cooling
it. To cool a game by t degrees we impose a tax of size ¢ payable at each move. However we
must take care to provide appropriate exemptions for moves to stopping positions so that our
tax rule won't distort the underlying economy. Numbers are already inactive and must not be
changed by additional cooling.

The game G; (G cooled by t) is defined for increasing values of ¢ as follows:

Gy = {Gf —t | GF +t} unless there
is a smaller temperature
t' for which Gy is infinitesimally
close to a number x, in which case
Gy=xz forall t=>t.

THE COOLING FORMULA
Let’s look at our Snort position G = @—e—we =2|-1 ast increases. We find

G=Gy = 2|-1

Gy = |-} (=2-3]-14)

Gy = 1]0

Gy = 3li=ien

which is infinitesimally close to L and so Gy =3 forall ¢ > 11

t,z{i e e e e e eemmn fethe mm = e mabm e mmmmmE e e enmaann
t: b I e D
t,1t -
-1 -
teg -

R AR 1§ 6 4~ &

Figure 6. The Thermograph of 2 1 —1.
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-1 -
teg -

R AR 1§ 6 4~ &
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So this game reduces to its mean value
exceeding 1%.

We represent this by drawing the thermograph of G (Fig. 6) in which, at height ¢ above
the ground, we plot the Left and Right stops of GG;. It’s handy to have the numbers along the
axis in descending order to keep Left’s moves to the left and Right's moves to the right.

, %, when it is cooled through any temperature

Cooling Settles the Mean Value
It will be clear that cooling by a sufficiently large amount must necessarily lead to a number,
m, say, so that we have

Gi=m for t=>1p

This means that every thermograph is surmounted by an infinite vertical mast. The
smallest value of ¢y for which this holds is called the temperature, (G), of G, and we have

m=t<G<m-+t
for all t > #(G). Why is m the mean value of G? The answer is that we can prove
(A+B4+C+--- )y =A+ By + Ce +---
and in particular
(G+G+G+ )y =G+ G+ Gy +---
so that for all ¢ > t(G) we have
(G4+G+G+--)e=m+m+m+---
and m+m+m+ - —t<GH+GE+GE+ - <m+mAtmA+--- A+t

To within a bounded error,
a lot of copies of G may be
replaced by the same number
of copies of its mean value.

If it were not for the tax exemptions for stopping positions, the equation
(A+B+C+- )y =Ar+ By + Ce + -+
would be obvious, because the typical Left option is
(A+BY4C+- )y —t=A+ (BE-t) +Cy + - -,
so that the tax on the whole move from
A+B+C+--- to A+BL4+C+---
can be regarded as charged to the component move from

B to BL.
Fortunately the tax exemptions on stopping positions don't affect this because if  is a number,
the Translation Principle ensures that

(r+G) =z + Gy (z—G)=2—Gy Ty =1




h How to Draw Thermographs 153
so that the equation

holds true if any one of A, B or A+ B is made equal to a number z.

How to Draw Thermographs

The Snort position
o0 0O 0-{0600eeO+0—e!
has the same value
G=2]|1]0

as the Domineering position

~

Figure 7. Drawing the Thermograph of G. Figure 8. The Final Form.

The thermograph of 2|1 is like the one we already found for 2|—1; its Left and Right
boundaries are slanting lines which start at 2 and 1 and then meet and become vertical at
height ¢+ = % showing that 2|1 has temperature % and mean value l% Because 0 is already a
number, its thermograph is just a vertical line.
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After Left has moved from G to 2|1 it will be Right’s turn and so the Right boundary of
2|1 is important and has been boldly drawn. We've also emphasized the Left boundary of 0
(which happens to coincide with its Right boundary).

Now to impose the tax! We tax Left by moving rightwards since this corresponds to
subtraction of t on our reversed scale. When we move the Right boundary through a distance
t at height ¢ it yields the thick broken line which starts vertically at 1 before turning to slant
to the right at height % Because Right is taxed by addition of t we move the Left boundary
of 0 to the left yielding the thick broken line through 0.

These two thick broken lines define the Left and Right stops for G; until they meet at a
place called the freezing point (in this case at height I’ above the point Z‘) showing that
cooled by 5‘ is infinitesimally close to Z; and so G; = 3‘ for all t > 15 The thermograph of G is
therefore as in Fig. 8, both boundaries coinciding with the vertical mast above this point.

When A Player Has Several Options

When a player has several options the best one to choose may depend on the cooling tem-
perature. Figure 9 shows how to draw the thermograph in such a case, namely for the Snort
position

G= o—eo—eo———) = {{2]-1},0| {-2|-4}}.

Figure 9. Drawing a Thermograph when Left has Two Options.

Which of his options 2|—1 and 0 does Left choose? Since it will be Right’s turn to move it is
the option’s Right boundary which is important and so
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For each temperature t,
Left chooses whichever of
his options has lefimost
Right boundary at t.

In the example this is 0 for ¢ < 1, and 2|-1 for ¢ > 1, and so we've emphasized the Right
boundary of 0 below the dotted line at ¢ = 1 and the Right boundary of 2|—1 above it. We
have also emphasized the Left boundary of Right’s only option, —2|—4. The thermograph
boundaries for G are therefore given by the thick lines obtained by taxing these by an amount
t at each height ¢ until they meet.

Foundations for Thermographs

You'll see that the bottoms of our thermographs are always a bit ragged because we continue
their boundaries a little bit below the ground. To see why, let's look at the thermographs of
and 1. For = = 0|0 the relevant option boundaries are both the vertical line through 0 which
are taxed in two oppositely slanting lines through 0. Since these meet at 0, the thermograph
of # is vertical above 0, but has two slanting lines just below 0, as in Fig. 10(a) (or Fig. 11(a)
with @ = b =0).

fo | o) =% {o|*]=14‘
X

1
and give while and give

o = e

— No— _'—:",, A
;ﬁ' \"'q‘_ oy «i O
rd

Z f 0
240 0B 0 2|0 2
Iq—+ = ,{._ —=
,-— —= -— —1

@) (b)

Figure 10. The Thermographs of Star and Up.

The same Left boundary serves for 1. To find its Right boundary we tax the Left boundary
of # to obtain the broken line which is slanting above the ground, but vertical just below it, as
shown in Fig. 10(b) (or Fig. 11(b) with a = b = 0). Once again, these meet at ground level,
but diverge just below it, although this time the Right boundary remains vertical.
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Examples of Thermographs
@ & © @

arb

/a BN a e BN e bl

Examples: (a)@—eo = @— —@ =10 @—o—@—=2/-1
(b) —@—o =2|+ @—eo—o—e =3|-1x
() O—e—e—)=#-3 O—@—e—e =1+ |-2
(d) o—@— e = +1% O—.—.—.—.=2$| 1

Figure 11. Thermographs of Games with Two Stops, = or x*.

(a) (0)

()

G,)b'!(.'-‘?d.) =

fa.+b

| [-aﬁ: Frabre ~@4b-cY Sea-bac-da- ~Qab-ged--N

Examples:

(a) o—o—eo—e =+11+ 1 =+(2]l) @—o—o—o—e—) ==+2+1==(3[1)
(b) o—@—o—o——e =13+ 14+0==5(2x|1%)

{C)The Childish Hackenbush positions with several loops of [; blue and r; red edges, i =1,2,3,. ..

Figure 12. Saskatchewan Landscape. Thermographs of Games with Two, Three or More Switches.
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! }r A
arbac
a b N a b c\
a—b=32(b—c) a—b<ib-c)
(the equitable case) (the excitable case)

Figure 13. Thermographs of Games a H b ‘ c.

Who Is To Move From The Final Stop?

This is easy to see from the thermograph, since a wvertical line represents a stopping point
reached after equal numbers of moves by each player, while a slanting line is one reached after
the starting player has alse made the last move. This means that the confusion interval of
G includes endpoints on slanting lines but excludes ones on vertical lines. It is important to
notice that where a thermograph boundary changes slope the confusion interval is determined
from the downward slope. Thus in Fig. 11(a) both endpoints are in the confusion interval, and
in Fig. 11(d) neither. For Fig. 11(b), @ is in and b is not, and conversely for Fig. 11(c).

If = is a number you can tell whether G > & or G < z by seeing whether the thermograph
of GG is entirely to the left or right of the vertical line through z. Thus the thermograph shown
in Fig. 14 for the game

G= @—o—eo—o—@—o = 4|3

1% |—1x

shows that G < 3, but G 7 1 because the thermograph has a “toenail” protruding to the
right of 1. On the other hand, if z is any number less than 1, we have G > z (the toenail is
infinitesimally small).
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Figure 14. A Thermograph with a Toenail.

A Four-Stop Example

If you're to play well in complicated situations you'll need to be familiar with thermographs
and to understand the Thermostatic Strategy given later in the chapter. In the next few
sections we’ll discuss play in sums of 4-stop games of the form

H=a|b||c|d (azb>c>=d)

to show you the kinds of considerations that arise. By the Translation Principle this can be
converted into the form

H=1s }-{:1‘.:|:y| zEz} =15+ G, say,

where
s = a+bt+c+d
r = ifa+b—c—d)
y (a—1b)
z = i(e—d)

The thermograph of this game has three possible forms (Fig. 15) according to the sizes of the
numbers involved. The informal terms equitable and ezcitable refer to certain aspects of your
strategy when playing sums of these games. We won't give exact definitions but the next few
sections contain a heuristic discussion of these ideas.

The Cheque-Market Exchange

In Chapter 5 we played the game of Cashing Cheques. Each cheque had a specified value
in terms of some number of moves, but a blank payee. Either player may acquire any single
cheque at his turn. An unclaimed cheque of amount x is the game +x = {z|—z}.
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N P NPZAN A 2N A

74 A & A 1S N N % oNAe a~
s34b 4b>syde de s
(Leftrexcitable) (Equitable) (Right-excitable)

Figure 15. Various Thermographs for a ‘ b H c ‘ d, (a = b>czd).

Let us now imagine a market-place for cheques in which Honest Joe offers either player an
unclaimed cheque of value z in return for another unclaimed cheque of value y. If x exceeds
y, then we have only a disguised form of the two-unclaimed-cheques game,

{zty|-—z+y}==2z++y

However if y > z, then neither player will ever accept Honest Joe’s offer, which evidently has
value 0.

More interesting variations arise when the same unclaimed cheque of size z is offered for
sale to Left and Right at different prices! Suppose that & moves are offered to Left in exchange
for for an unclaimed cheque of value y, but the same x moves are offered to Right in exchange
for an unclaimed cheque of value z. The game represented by this pair of offers is

G={zty|-ztz}

If x is quite large compared with y and z, then it’s quite obvious how to play G, even when
it's added to other games of similar type.

Equitable Games

Indeed, play in the sum of n copies of it,

n-G=n{rty|-z=+z}
proceeds in a very equable and equitable manner whenever x is large enough compared with y
and z. In this case the players each view G as a bargain of largish size x and they take turns
in acquiring these desirable bargains. They won't bother about the comparatively small prices
+y and 4z while there are still big bargains to be had. This short-sighted view is optimal
because the unclaimed cheques of values +y and +z will themselves be equitably divided later
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on in the game. If z > y > z > 0 and both x — y and = — z are greater than y — z then the
Left stops of n-G are:

L(0) L(G) L(2-G) L(3-G) L(4-G) L(5-G) L(6-G) L(7-G) L(8-G) ...
0 z—y y—2z =x—=z 0 T— Yy—z T—=z 0o ...

In our 4-stop example, H = alb||c|d, when
3b4+c>s>204 2

the equitableness of H becomes very clear when we write the stopping positions of n-H in
terms of those of H:

L(0)L(H) L(2-H) L(3-H) L(4-H) L(5-H) L(6-H) L(7-H) L(8H)...
0 b at+d a+btd s s+b s4a+4dstat+b+d 2s

In general, a very equitable game is one in which, for some sufficiently large n = 27, the value
of both the Left stop and Right stop of n-G is

3 20k g,
where the a; are all the possible stopping positions of G and k(i) is the number of moves from

G to the stopping position a;. So 27 copies of a very equitable game add up to a number when
7 is large enough.

Excitable Games

If y + z = 2z, then the game
G={zxy|-z+z}

simplifies to a number. But if G is a non-number in which just one of y and z exceeds z, then
we call G excitable.

Considered as a public market offer of 2 free moves, the excitable game G is certainly not
equitable, for it is offered to one player at a discount and to the other at a markup! And
while the unlikelihood of immediate redemption allows the player a sum of many copies of an
equitable game to ignore the possible cost (or profit!) which he may realize later as a result of
the +x or +z which he pays for the immediate gain of x, the player of the sum of many copies
of an excitable game can’t!

If y > x and Left accepts the offer represented by G, then he must face the likelihood that
Right will realize a quick profit by immediately redeemimg the +y cheque. It will cost Left
about n(y — x) to play n copies of the excitable game G. In fact Left plays in G primarily
because he is a spoiler who realizes that if he doesn't buy up every available copy of G at a
small loss, Right will later be able to buy some of them at a handsome profit. Right, on the
other hand, may view Left’s move from G to x + y as a threat to move to +y next time, a
threat serious enough to demand an immediate response to —y.

In general, when playing a sum of several games, a move in an equitable component is
usually followed by a reply in a different component, but a move in an excitable one usually
requires a response in the same component. A wvery excitable move poses a grave threat which




h The Extended Thermograph 161

must be answered immediately; an equitable move does not. In the language of the Japanese
game of Go:

Excitable moves keep sente.
Equitable ones don't.

The game H = albl|c|d, with @ = b > ¢ > d, is very equitable if 3b + ¢ > s > b+ 3¢, and
is excitable if s > 4b or 4¢ > 5. Otherwise, the sum n-H is best played equitably until about
3 turns before the stopping position, when optimum play switches to a more exciting finish.
Many games, 2|1||—1|—5 for example, have non-obvious tendencies to be mildly excitable in
certain circumstances, and so “equitable” and “excitable” are best thought of as informal
terms.

In general the left stop of n-H, when well played, is:

L(H)L(2-H) L(3-H) L(4-H) L(5-H) L(6-H) L(7-H) L(8H) L(9-H)... m
s> 4b b 2b 3b b ab 6b b 8b 9b )
4b = s = 3b+c b 2b 3b s s+b  s42b s+3b 2s 2s5+4b . %s
3b+ec >8> 2b4+2c b a+d a+b+d s s+b s+4a+dsta+bitd 2s 2s+b . %s
2b+42¢ > 5> b+3c b b+c a+b+d s s+b s4bdc s+a+bid 2s 2s+b . %s
b+3c > s > de b b+e b+2c  b43c s5+b s+b+c s+b+2¢c s+b+3c 2s+b . %s
dc > s b b+ec b+2c b+3c b4dec  b+5c b+ G b+Tc b+8c c

The Extended Thermograph

Let’s see if we can’t manage to compute the thermograph of a fairly complicated game like
the Snort position

G= O—e—O—e—e—e = {0,{2]-1} || {-2|-4}}

without first having to draw separate thermographs for all its options (cf. Fig. 9). For small
enought ¢ we have

Gy = {0-t,{2—t|-1+¢} —t]| {-2-t|-4+1t}+t}
{—t,{2—2t|-1} || {-2]-4+2t}}.

Il

and we can indicate the stopping positions of this game by lines of appropriate slants as in
Figure 16. Some of these lines meet at height ¢ = 1 for which we find

Gy = {-1{0]-1} || =2+ =}.
If ¢ is just greater than 1, say t = 1 4 u, the first option becomes dominated and we have

G-g = G1+u = {{—2u|—1} || -2+ ’U.}

. 1 1
until at £ =15, u = 3

Gir={-1+% | 13}

and so for t = 1% + v and small enough v
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PRy 1 /0 i 2 3 .

Figure 16. An Extended Thermograph.

Gi={-1-v|-11 +v}
until at t = 1%, v = % we reach
— 1Ll
Gl% —_ l4 b
and so
Gy = —1%

for all larger ¢.

The extended thermograph contains lines representing all the stopping postions of the
simplest forms of G, for all values of #, with the Left and Right stops emphasized.

Getting the Right Slant

It’s fairly easy to work out the slants of all these lines directly. For instance, consider the game

{a | vlet | {£a elrHlg}-

Begin by putting a 0 under the slash of highest “order”; then put a 1 under the principal slash
(a double one) in the Left option, and a —1 under the treble one in the Right option. Then
continue with successive generations of options, adding 1 to or subtracting 1 from the parent
number:
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fa | o1 | @ e |l ¢
0
1 -1
2 0 0 -2
1 —1 1 -1
0 -2

and we read off the slants of the lines through

a b ¢ d e f g
to be

2 1 -1 1 0 -2 -2

When there is more than one option, treat each one similarly. Our previous example was

0o , 2 | -1 I -2 | —4
1 1 -1
2 0 0 -2
giving the lines 0 —1#, 2 —2t, -1 —0t, —2 — 0t, —4 — (—2t).

The Thermostatic Strategy

We can’t always work out the thermograph of a sum of several games from the thermographs
of the components. For example, if

G =4|-4  and H={44+4]|-4,-4+4}

then G, H and G + H all have the same thermograph. However the thermograph of G + G is
just a simple mast through 0, and so is different from that of G 4+ H. The Left stop of the sum
of two games with the same thermograph as G might be anything from 0 to 4, while the Right
stop may be anything from —4 to 0. We can’t hope to obtain any more precise estimates of the
confusion interval without looking beyond the thermographs into the more detailed structure
of the components.

Indeed, when there are many components, the optimal strategy can be very complex and
you may have neither the time nor the computing power needed to find the very best move.
However, our thermostatic strategy, THERMOSTRAT, gives you an easy way of finding a
“good move” which is close to optimal and will be enough to ensure your victory in many
situations. THERMOSTRAT finds a good component for you to move in and then you can
ignore the other components and find your proper play by just looking at the thermograph
of this one. Ewven though the number of components may be very large, THERMOSTRAT
ensures that you'll get a stopping position for the sum which differs from the optimal one by
no more than the temperature of the hottest game.

Here’s how to play THERMOSTRAT on

A+B+C+---,
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supposing that your name is Left and you know the thermographs of A, B, C, ... . Draw the
compound thermograph whose right boundary is the sum

Ry(A)+ Ry(B) + Re(C) +
of those for the components, and whose width at height ¢
Wy = max{W,(A), W, (B),W;(C),...}

is the largest width of any of the components at that height (Fig. 17). In other words the Left
boundary of the compound thermograph is

Ry(A) + Ry(B) + Ry(C) + -+ + W,

This is the amount that THERMOSTRAT guarantees Left if he starts with his thermostat set
to give an ambient temperature of t.

fELA- 3 ms" -8 ma-19 m.,'m_cx -24

tel3 t=13
£=12- -——T=12
~-T=10
t=9---meee =9
-------------- fg‘f

We(
: Wy
% 4'.53\-»4 =y N N

Figure 17. Drawing a Compound Thermograph.

The temperatures at which Left feels most comfortable in our example are those between
5 and 7, where the Left boundary of the compound thermograph is furthest left. Since he's a
seasoned campaigner who shows only just as much heat as is absolutely necessary, he prefers
an ambient temperature of T' = 5, and will therefore move in the component B, whose ther-
mograph is the widest one at T'= 5.

The ambient temperature
is the least T for which
Rp(A)+ Rp(B) + Rp(C) +---+ Wp
is maximal.
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To find the THERMOSTRAT move,
first find the ambient temperature, T,
and then make the T-move in a
component that’s widest at T

Left’s T-move in a game G is a move to an option which determined the Left boundary of
the thermograph of G at temperature T
In our example, suppose that the thermograph of

B={-3,9-5| -11]-25}

was worked out as in Fig. 18, and you’ll see that B*? = 9|—5 was the option that determined
its Left boundary at temperatute 7' = 5. The THERMOSTRAT move is therefore that from

A+B+C to A+ BY4c

In the Extras you'll see a proof that THERMOSTRAT does as well as we say it does.

A 4 A

Figure 18. Thermograph of B = {B*:, B2

BR} = {-3,9 ‘ -5

1 ‘ _25).

Thermostrat's Not Often Wrong!

Because the boundary lines of a thermograph are always vertical or diagonal the difference
between the Left or Right stop of a game and its mean value is at most equal to the game’s
temperature. Moreover,
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the temperature of any sum
is no more than the
temperature of any component.

THERMOSTRAT achieves this bound, so

when you're playing the sum
of a large number of games,
the difference beteen THERMOSTRAT
and the optimal strategy is
bounded by the largest temperature.

For example if Left is playing the sum of a million games which all have integer stopping
positions and temperatures at most 10, then THERMOSTRAT guarantees that he’ll come
within 10 of the stopping position. In fact by playing THERMOSTRAT, Left evidently makes
a suboptimal move (i.e. one that decreases his final stopping position) at most 10 times, even
though the compound game lasts several million moves:

THERMOSTRAT makes millions
of optimal moves, and only
a few suboptimal ones!

THERMOSTRAT provides independent proofs that

The Mast Value of a game
is also its Mean Value,

and that

the Mast Value of a sum of
games is the sum of the
Mast Values of the components,

because the value it guarantees to either player is within a bounded amount of the sum of the

mast values. THERMOSTRAT might therefore be called

PLAYING THE AVERAGES.
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THERMOSTRAT has the property that for sums of many components,

the action’s routinely
in the hottest game.

WHERE'S THE ACTION?

But it also tells you a good move to make in the more exciting situations when this isn’t so.

Heating

The inverse of cooling is called heating. Formally, the result of heating G through a temper-

ature ¢ is the integral
t + t
/(?z{/‘GL+4/‘GR—t},

unless G is a number, in which case
i
f G-aG.

As we cool a game down until it freezes at its mean value there will be certain critical tem-
peratures at which it undergoes a phase change and “gives off” particles, and we can ohtain
the original game from the mean value by adding the heated forms of these particles.

Let’s look at this for some of our examples. For the Snort position

G= @—eo——e =21

we found

and
Gt=‘2]:‘ for t>1%.

So at temperature 12, G gives off the particle *, and heating Gl% by 1% we find

1
2k,

@ oo =%+fl

For
G= o—o—@—eo—o =1|0]-2
at the (only) critical temperature of 1 we find

G, = 0[j0[0 =t

and so




168 The Heat of Battle [ Y

For the example
G- @—0O—0—0O—0—C—e =2[1]0
there are two critical temperatures. We find
Gy = (1114} = {1 ++3)
but for small § > 0
G%H:{l—ﬁ | i +4}
whose “limit” as J tends to 0 is

— 1L
G%+ = 1|3

The particle given off at temperature % is the difference
1 1

G%—G%_F = 1*|§+—E|—].

1 1 1 1
= {z|* 0] 03 *-3}
= ¢,say.

The next and last critical temperature is t = %, at the freezing point, and we find
G,‘i = Z’} =+ *
4

so that
3 4 i
G- O8O0 =1+[1«t[e
In general a game G has certain critical temperatures
t(}, tl_, tz. .
at which G, differs from the limit G;. of G, as § tends to 0, so that at temperature £ the
cooled game changes phase and gives off the particles
€ = Gy — Gp
We then have Simon Norton’s thermal dissociation of G
G=Goo+ftnftn +ftl€f1 + .-
in which G is the mean value, the ¢; are the (infinitesimal) particles given off and the largest ¢;
is G’s own temperature. BUT BEWARE: Although every corner on the thermograph indicates

a phase change there can be latent phase changes as well. Several instances occur among Snort
positions, for example

G- @—_—e—eo—o—o {3

undergoes a phase transition from

Lx || =1 |—2%, 0|-3}

Gy =3%]0% to G1%+=%|ﬂ

which is concealed in its thermograph (Fig. 19).

A common type of example is
3 5
[

which has the same thermograph (Fig. 20) as its hotter component, obscuring the phase change
at t = 3.
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1%}

Figure 19. The Thermograph of {{3

—2*},{0‘—3}}.

‘ {—1%

/5 0

Figure 20. The Thermograph of fﬂs T+ f5 T, or of fr] T.

Does The Excitement Show?

When the Left and Right houndaries are both slanting as they meet, it’s a hint that the game
may be equitable, and in the simplest cases the particle given off at the freezing point will be
#. This happens for
C= @—o—@—(—e =2«|0]-1,
whose thermograph is shown in Fig. 21.
But if, say, the Right boundary is vertical at the freezing point, the game is likely to be
Right-excitable and the final particle given off will be a positive infinitesimal, often a tiny. For
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2x

R 75N

1 o -1

Figure 21. Thermograph of {2x || 0 ‘ —1}.

example, the game

H=5]1]-9
has temperature 4 and we find
Hy=1||1|-1=14+{0]|0| -2} =1+ +

indexboundary, Left
Since this is the only critical temperature we have

4
H=1 -i-/ +2

/

/5 1

Figure 22. The Thermograph of {5

1‘—9}.
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an excitable game whose thermograph is shown in Fig. 22.

However, we'll see that in some cases the behavior of the game is controlled by a particle
given off just before its freezing point, and in these cases the opposite adjective (of excitable,
equitable) may be more appropriate.

Selling Infinitesimal Values To Your Profit-Conscious Friends

Those who think in business terms usunally associate the stopping positions with money rather
than numbers of free moves. Such hard-headed business people aren't usually interested in
infinitesimal games. “When there’s no money in it,” they ask, “why quibble about who gets
the last move?” The answer is

You can’t know all about hot games
unless you know all about infinitesimals.

This is obvious because any hot game can be built by heating up infinitesimals. Although sums
of differently heated infinitesimals can be very complex, sometimes a single heated infinitesimal
provides an idea which is crucial to finding the best move in a hot game.

ts9 A
e aabe EISTIPIESRERY REEEEERR, ooy

A 8 E) )N
Figure 23. Thermograph of {8 ‘ 4 H —4 ‘ —20}.

For example let’s consider the game
G+ G+ {—4]|-20}

where

G=8|4]| -4]|-20
has the thermograph shown in Fig. 23, mean value —3, temperature 9, and whose freezing
point has the two slanting lines we normally associate with equitable games. However, if you
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don’t look too closely you won't see much difference between G and the following excitable
approximation whose thermograph (Fig. 24) differs by at most 1 unit from that of G for all
temperatures above 1:

/

/6 3

Figure 24. Thermograph of H = —3 + fq t={6 H -3 ‘ —21}.
Since the approximating game satisfies
9
H+H+{—3| —21}:—184—/ (T + 1 +x),
the original game behaves like

T+ 1+,

in which Left should take care to move not to 1 4= (which is not positive), but to T + 1. So
Left’s best move in the original game is not to

G+ {84} + {—4]—20}
but to
G+G—4

A Right move from

G+G+ G

to

G+ G + {—4|-20}

might not have been exciting in any strict sense, but it was bold enough to force Left to abandon
his routine defence in order to get the last move in one of the hotter games (temperature greater
than 2).
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Nim, Remoteness and Suspense in Hot Games

Again, if you understand the purely infinitesimal game of Nim, you’ll not be too surprised to

find that from the hot sum
100 99 98
—50 + / #5+f *6+/ *8

the only winning move is in the coolest game, to

98
48 + / #3.

This won't be found by any strategy which plays the averages, because the hottest moves
obscure it. But because there’s a big temperature gap betweem 98 and 0 and only a small
one between 100 and 98, the infinitesimal considerations dominate the thermal ones. In this
position Left can ensure a stopping value of at least 40, but only with the above starting move.
Any other starting move gives Right —37 or better.

Hot games can also be made to depend on notions such as the suspense and remoteness
numbers we’ll introduce in Chapter 9. Consider asymmetrical heating:

0,

; H
‘-i-.._.__‘_5
e
=
Il

H
"-u.___‘-|$
=

*

[
——
)

_I_

L'~
*
Eeal

This is Nim with the condition that Left collects # points every move while Right collects

y points. In a game like
100 (99 100 (99 100 09
] *D + ] %0 -+ / #8

each player will try first to win the Nim game, but subject to that, Left will try to prolong the
game and Right will try to shorten it. The confusion interval runs from 100 to —99, corrected
by the suspense and remoteness functions of the corresponding Nim game. Evidently

you can't know everything about hot games
unless you know lots of things about lots of others.
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Overheating

Other kinds of heating sometimes turn up. If you apply the rule for heating G by an amount
X without any reservation at all we get what we call overheating by X, starting from s,
where X and s are games, and for which we use the notation

X
[

— .,
whose value is s + s + - -+ 4 s if (¢ is a non-negative integer and

X X X
/G:{X+/ Gr —X+/ GR}

if G is not an integer. The most common case is X = 1, although X may be any positive
game. Let’s see what happens when we overheat by 1, starting from 2, using just

1
[G for / G.
. 2

{1} s Jo={]}=0,
={0] }, so fi1={1+f0|}=1
2={1]}, o f2={1+[1]}=3

and so on, all integers doubling,.

G times

We find

Il

Il

+={0]1}, so J3={1+J0] -1+ [1} =11 = 1x,

Lo}, so [r={14fo|-14+ [ =1]«

So(1h s [i-{1+fd| -1+ 1=2e]1

L ={0[4}, so Ji={1+f0|-1+4[1}=1]0/-1x
We can also overheat non-numbers:

+1={1]-1}, so JEL={1+[1]| -1+ [ -1} = 3|-3 = 43,

« ={0]0}, so Jr={1+f0| -1+ [0}=1]-1==l,

= {0]*}, 80 Jr={+f0]-1+[«}=1]0]-2.

When X = 0, overheating from X +1 to X preserves sums:

X X X X
/ M+B+C+~J=/ A+/ B + C+--

X+ Jxn X1 X+
and so must multiply mean values by a constant factor. In particular, since

1 1
/ 1 = 2, the mean value of / xis 2x

2 Ja2
for any number x. Figure 25 illustrates this with a few thermographs. These are easily found
successively; for instance, each in the last row derives from the two nearest to it above. You
can find the thermograph for [(1—x) by reflecting that for [z in the vertical line through 1.
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Figure 25. Thermographs of f; T, r= % % % ————
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Py

Figure 26 superposes all these thermographs, so that you can see how the thermograph for

changes as x varies.

J Jx

J

T
=

.
el

ofw?

&

%
>
el
-

B~

f 5 W f_n_ f.?. A fi fz f
16 1§ 16 16 16 16

A

J

2 1

Figure 26. A Thermographic Thicket of Numbers Overheated from 2 to 1.

1
/— = 1=,
5 .

Sequences like

ool =
Il
w
W
[S]
=

—
= | =
o | e
I
H=
v

arise in several games. Here are some examples.

0
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The sequence of Domineering zigzags:

g & W :

Zl ZZ ZS ZéL Z'ﬁ Zb

has the same values as the sequence of Snort positions

® 6 60O 60 60O 6010

We have
Zop1 = £(Zo+ Zon—1, Zo+ ZBan_3,Z4 + Zop_s,...),
Zonys ={Zo+ Zopn, Zo + Zon_9, 24+ Zop_s,... | Zv+ Zon1,Z3+ Zon_3. Z5 + Zap_s, ...}

leading to the table
n‘[]12345678 9 10 11

Zn‘[] 0 1 % 10 £1 2| =£1x 2|10 £(2],20) 1% Zg+*
Let’s compare

1
3
Zs = 2|1)|0  with / g = 2|1 || *
2

There is only an infinitesimal difference, so that Zg is just [ g‘ infinitesimally shifted and
we write
Zs s [ %—ish.

In the same notation, we find that

Zsni1 OF  Zgnis 18 0-ish  ie. [0-ish,
Zsn_1 Or Zgny_3 is  =£l-ish ie. [ =ish.
Zsn+a 18 l-ish, ie. fl—ish,

1

Zsn—z is  2|0-ish, ie. [ S#-ish,
while Z,, gives the interesting sequence

Zy=10, Zg=2[1)0, Z1»={3 3

2|1 || 0}-ish, Z16 = {4

2[[[ 1| n} -ish

Comparing these with

[3=2x, [E=3«201 [E=4xBI2||1, S8 =532
and noting that [ % = 1# is 1-ish, we see that
£y is f i—ish, Zy is f %—ish, VAR f %—ish, VAT R L) f%—ish,
The Domineering position of Fig. 27 has value
5t *+ Zy+ Zia—Zg +

which is 3 4+ [(x+ 2% —2)-ish, i.e. 5+ [ g-ish.
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— |

%

Za 1

.

Figure 27. A Domineering Position after Left’s Eighteenth Move.

Although [ % is surely positive, it has a Right stop of 0 and so there are [ %—ish games which
are not positive. However, in our case the % outweighs the “ish”, so that Left should win, even
though it is not his turn. Even without the % Left could win by starting, because the Left

stop of [ % is 1 and this won’t be affected by the ish.

Cooling the Children’s Party

The children’s party game that closed our previous chapter is really just Snort played on a
circular graph, which after some moves gets replaced by a number of chains of the forms

® 60 & >0 0 *+*> 0 &6+ +»+ 0
LIL  L2L L3L LAL L5L

W 0O @0 @+ @ oo
LIR  L2R L3R L4R L5R

O OO O——0 O—e——0O O—e—o——(
RIR  R2R R3R R4R R5R
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This time it’s only after cooling by 1 that we see the structure. In fact

(LnR); i 0-ish for n = 6k + 1,6k + 2,6k + 3,
ML 41bsh for n = 6k, 6k — 1, 6k — 2,

while
2-ish  for n = 6k + 2,

(LnL)y is { (3]1)-ish for n = 6k — 1,

and otherwise

l-ish  (2[1)-ish  (3[2]|1)-ish  (4[3)]2 || 1)-ish
forn=1o0r3 4 o0r6 Tord 10 or 12

All these cooled values are le X-ish for suitable X, as given in the table

1 2 3|4 5 67 8 9|10 11 12|13 14
Xfor(LnL), |4 1 1|3 1. 3|1 1 I[L 3, 1)3
Xfor(LmR); |0 0 O |* == =0 0 0| = == [0 0

But How Do You Cool A Party By One Degree?

The obvious answer is to insist that each child bring a present suitable for one of the opposite

sex. We suggest that each girl bring a unit blue Hackenbush stick and each boy a red one:
“blue for a boy, pink for a girl”

But a child who promises to be sociable and sit in a gap containing only 1 or 2 chairs is exempt
from this requirement because the values of

L1L, L1R, RIR, L2L, L2R, R2R

are already number-ish and must not be further cooled.




Extras

Three Snort Lemmas

<

These identities are established by noting the corresponding moves indicated by letters
above (Left) or below (Right) the appropriate nodes. In the middle figure the nodes D, E need
not be present.
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Figure 28. Values of 5-Node Snort Chains.
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Three Snort Lemmas

O——0n 4t o ___ﬂf-_* whh ool s ef-Joofe 3 S
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Table 1. Values of Snort Chains with Six Nodes.
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Figure 29. Values of Various Snort Positions.
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A Snort Dictionary

In Fig. 3 we gave the values of Snort chains with at most four nodes. Figure 28 gives values
of 5-node chains and Table 1 those of chains with 6 nodes. Every such chain, or its negative,
occurs. For the 6-node chains find 3 nodes at the head of a column and the remaining 3 on the
right of the table; the arrowheads indicate the connexions. Figure 29 lists some miscellaneous
positions.

Proof of the Number Avoidance Theorem

It will be enough to prove that if x is equal to a number, but G is not, and if
G + x>0, thensome GE4+z>0.

This statement is unaffected if we replace x by an equivalent game and so we can suppose that
x is in its simplest form. The good move from G + x must be to G + z¥ > 0 since otherwise
some GL +2>0. If no GF + 2z > 0, let

:12):1?L>1L‘LL>:ELLL>---

be the finite decreasing sequence of successive Left options of z. If y is the smallest of these
which has

G+y=0,
then since G is not equal to the number —y, we have
G+y >0, and so some G 4y >0,
since we cannot have G + y% > 0. So, for this G,
Gl+axz>Gl+y=0.

The result can be used repeatedly to show that if x, y, z, ... are equal to numbers, but G,
H, K, ... are not, and if

t+y+z+-+G+H+K+ - >0,

then we can find a good move for Left from one of the components G, H, K, ... .

Why Thermostrat Works

We assert that for any given T, Left can guarantee at least
Rr(A)+ Rp(B)+ Rp(C)+--- =T
if Right starts, and at least
RT(A) + R-T(B) + RT(C) + -4 Wop
if he starts himself.
For suppose that Right moves from

A+B4+CH+--- to ARt B4+C+---.
Then Left is inductively guaranteed at least

Rp(A®) + Rp(B) + Rp(C) + - -- + Wp(AR)
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and Fig. 30 shows that
Rr(AR) + Wp(AR) > Rp(A) - T,

no matter how T compares with the temperature of A.

A
A~
!

R.I;[A)

Figure 30. When Right Starts.

If it’s Left’s turn to move, we'll suppose first that some component has temperature at
least T', and so the component, B, say, which is widest at T, will have a temperature at least
T since games of lower temperature have width 0 at 7. In this case THERMOSTRAT tells
Left to make the T-move in B, say from

A+B+C+--+ to A+BE4+C+--.
when he is inductively guaranteed at least
Rr(A) + Rr(B*) + Rp(C) + --- — T,
and Fig. 31 shows that
Ryp(BY) =T = Rp(B) + Wr
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< T WT — N T

R

B R (B)

Figure 31. When Left Starts.

But, if every component has temperature strictly less than 7', this argument fails. In this
case Left should reset his thermostat to T, the largest temperature of any component (or
possibly to an even cooler temperature) before continuing. Figure 32 shows that this will not
reduce the value of

RT(AJ-i RT(B) B RT(C) + -4+ Wo.

A |

()

T N 77N ]
RARM RBRE  RORO ~ RORD

Figure 32. Resetting the Thermostat.
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Blockbusting

In the mid 1980s Berlekamp and his students were able to extend the idea of overheating.
They used it to obtain a complete analysis of a game they called Blockbusting, and to obtain
much more information about Domineering than was known earlier. Most remarkably, they
were able to evaluate end-positions in the ancient and very difficult oriental game of Go.
Blockbusting is a partizan game in which Left and Right play on an n x 1 strip of squares
called parcels. Each player, in turn, claims one previously unclaimed parcel and colors it with
his color, bLue for Left; Red for Right. The game ends when all parcels have been colored and
Left’s score is then equal to the number of parcel boundaries which have been colored blue on
both sides. No points are awarded for blue-red or red-red adjacencies. Evidently, Left seeks
to maximize the humber of blue-blue adjacencies while Right seeks to minimize this number.
Three types of position occur: LnL, LnR, RnR denote n x 1 strips with ends bordered
respectively by two blue parcels, a red and a blue parcel, two red parcels. The values are given

exactly by
1% 1= 1+
f rn 1 { yn 1 %‘ zﬂ ?
1 1 1

where f =n-*+ f, ie. =+ f or f according as n is odd or even, and x,, y., z, are as in the
table:

n]o 1 2 3 4 5 6 7 8
. |1 1+ 1 11 13 1T 2 21 2ol
1 3 T 1 11 3 7

o |05 3 5 1 13 1y 17 g
1 1 3 " 1

where the values, apart from irregularities for n = 0, #; and x5, are arithmetically periodic
with period 5 and saltus 1.

... An On We Go!

These Blockbusting results have been extended in two important ways. First, thanks to a
close relationship hetween Blockbusting and Domineering, precise expressions for the values
of Domineering boards of sizes 2 x (2n + 1) and 3 x (2n + 1%) were discovered, namely

A 1 4] 1
oot 8§ fi*
T, and To
1 1
2 4

where f = n -+ [ and z,, are as in Blockbusting.
Second, and even more remarkable, is the fact that a wide class of endgame positions in
the Asian board game, Go, have values which can be expressed as

1
G=xg

o 1%
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where g is the chilled value, obtained by cooling GG by 1 degree. Thus, in Go as in Blockbusting,
chilling can be inverted by warming. This result has led to a breakthrough in the study of
late-stage Go endgames.

Go contains many loopy positions (see Chapter 11), called kos and superkos. The study
of such positions, using extensions of thermography, is an active area of research. Some
preliminary results appear in GONC, More Games of No Chance (the Proceedings of the 1994
and 2000 MSRI workshops), and other papers referenced there.

The modern overheating operator as now defined in the first paragraph of p. 176 of this
second edition, may or may not be linear, depending on the games s and X and on the domain
of G to which the operator is applied. One interesting case, studied by Kao Kuo-Yuen, in which
the operator is not linear, is when s = X = 0 and G ranges over the numbers. Then f(?G is
a sum of powers of 1, which depends on the binary expansion of G according to rules which
Omar will enjoy working out.

Hotstrat, Thermostrat and Sentestrat

Thermography can be extended to cover kos in the game of Go, situations where repetition of
moves is not allowed.
There are various strategies you might consider when playing the sum of several hot games.

1. Hotstrat: Move in a component whose temperature is maximal.

2. Thermostrat: Move in a component whose thermograph is widest at the present ambient
temperature (current tax 1'ate).

3. Sentestrat: If your opponent has just moved to a temperature higher than the ambient
temperature, respond directly in the same component. Otherwise, play Hotstrat. The
new ambient temperature is the minimum of its previous value and the temperature of
the position selected by Hotstrat. (Sente is the Japanese word for a forcing move in Go.)

These give the same answer in simple situations, but Hotstrat can lead you astray in more
complicated ones. Look, for example, at the sum G + H where

G=1||w] o] -20f] 21 and H=1]0]-18

each have temperature 1. If Right plays G®, then all three strategies recommend that Left
responds with GFL = 10 || 0 | —20. If Right now plays to Hf = []| —18, the temperatures
of the two components are 10 and 9 but Left is ill-advised to follow Hotstrat and play to
1040 | —18, since Right then plays to 10 — 18 = —8. Left should respond immediately to
HH%% = (0 and win by playing to 0 after Right’s move to 0 | —20.

As another example, consider the sum F' + G + H where

F=6||A-9. G=-5

B|-99 and H = —6|C
with A, B, C as shown in Fig. 17, from which we find

mpragig =mp+mag+myg=2-11-12 and tpiqgig=te=1ty =06.
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No matter which of the three strategies Left uses to play second on F' + G + H, he will
answer Right’s play from F' to F® with FFL and Right’s play from G to GF with G®L. But
after Right next plays from H to H®, arriving at the position A + B + C, Left’s strategies
differ. According to Sentestrat, the ambient temperature is still 6. Right just played to C and
te = 7 > 6, so Sentestrat responds by playing C' to CF = —12, ensuring an eventual result

2R6(A)+R6(B)— 12_6:2_11_12_6=_2727nF+G+II _tF+G+_U

But, as we saw on pp. 164-165, Thermostrat recomputes a reduced ambient temperature of 5,
and plays on B to ensure an eventual score > —24,

References and Further Reading

The existence of mean values for a class of games rather like ours was first raised and proved by Milnor
and Hanner. Another proof (with a constructive algorithm) is due to Berlekamp, and yet another
{very short, but nonconstructive) to S. Norton. Our thermographic method was originally taken from
ONAG, but has since been considerably generalized by Berlekamp, Martin Miiller, Bill Spight and
their students.

E. R. Berlekamp, Blockbusting and Domineering, J. Combin. Theory Ser. A, 49(1988) 67-116.

Elwyn Berlekamp, Introduction to Blockbusting and Domineering, in The Lighter Side of Mathe-
matics (R. K. Guy & R. E. Woodrow, eds.), Spectrum Series, Math. Assoc. of America, 1994, 137-148.

Elwyn Berlekamp, An economist’s view of combinatorial games, in Games of No Chance, Proc.
MSRI Workshop on Combinatorial Games, July 1994, Berkeley CA (Richard Nowakowski, ed.), MSRI
Publ. 29, Cambridge University Press, pp. 365-405.

Elwyn Berlekamp & David Wolfe, Mathematical Go: Chilling Gets the Last Point, A K Peters,
Ltd., 1994; also as Mathematical Go: Nightmares for the Professional Go Player, Ishi Press Interna-
tional, 1994,

Dan Calistrate, The reduced canonical form of a game, in R. J. Nowakowski (ed.) Games of
No Chance, Proc. MSRI Workshop on Combinatorial Games, July 1994, Berkeley CA (Richard
Nowakowski, ed.), MSRI Publ. 29, Cambridge University Press, pp. 409-416.

J. H. Conway, On Numbers and Games, Second Edition, A K Peters, Ltd., 2001, Chapter 9.

Olof Hanner, Mean play of sums of positional games, Pacific J. Math., 9(1959) 81-99; MR 21
#3277,

Kao Kuo-Yuen, Sums of hot and tepid combinatorial games, PhD thesis, Univ. of North Carolina,
Charlotte, 1997, 115 pp.

David Moews, On some combinatorial games connected with Go, PhD thesis, Univ. of California,
Berkeley, Dec. 1993.

John Milnor, Sums of positional games, in Kuhn & Tucker (eds.) Contributions to the Theory of
GGames, Ann. Math. Studies, 28, Princeton, 1953, 291-301.

Martin Miiller, Elwyn R. Berlekamp & William L. Spight, Generalized thermography: algoriths,
implementation and application to Go endgames, TR-96-030. Internat. Comput. Sci. Inst., Berkeley
CA, ISSN 1075-4946, 1996.

William M. Spight, Extended thermography for multiple kos in Go, in Computers and Games,
Springer Lecture Notes in Computer Science, 1558(1999) 232-251.

Laura J. Yedwab, On playing well in a sum of games, MSc thesis, MIT, 1985. Issued as MIT/LCS/TR-

348, MIT Lab. for Comput. Sci., Cambridge MA.




_7-
Hackenbush

All things by immortal power,
Near or far,

Hiddenly

To each other linkéd are.

That thou canst not stir a flower
Without troubling of a star.

Francis Thompson, The Mistress of Vision.

In this chapter we’ll tell you what we know about Hackenbush (except for infinite and loopy
varieties that you'll find in Chapter 11) but first we’d better warn you that the arguments are
rather long. For those who are eager to skip on, some of the remarks about flower gardens are
repeated in Chapter 8, so that you won’t need to read this chapter to understand anything
else in the book.

Green Hackenbush

Figure 1. A Green Hackenbush Bridge.

189
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In a totally grEen Hackenbush picture such as Fig. 1, any edge may be chopped by Either
player, after which any edges no longer connected to the ground disappear.

Here there’s a complete theory. First we observe that the Snakes-in-the-Grass argument of
Chapter 2 shows that Hackenbush pictures made only of green strings are directly equivalent
to Nim.

Next we use a very important tool, applicable not only in Green Hackenbush, but in
Hackenbush more generally, called the Colon Principle.

THE COLON PRINCIPLE

You can easily prove this by playing the difference of the two lower games. In particular,

iftH=K,then G, : H=G,: K

For a formal definition of ¢ : H see the Extras.
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Green Trees

Green trees can now be evaluated using only the Colon Principle. For example, the tree

-

has value #5 because

N

a a
s+ =

d d
) ++)+ed = =4

You can see that the Colon Principle often allows you to do your additions at some distance
above the ground.

Observe that two kinds of addition are needed here. When moving down a branch towards
the ground the nim-value is increased by adding 1 in the schoolbook way, +1, but when several
branches join at a node, their values are added in the nim way, f. But because both types of
addition have the properties

odd plus odd = even plus even = even,
odd plus even = even plus odd = odd,

you can see that

The nim-value of any sum of
green trees has the same parity
as the total number of edges.

THE PARITY PRINCIPLE

The Fusion Principle below will show that this extends to all Green Hackenbush pictures.
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Fusion

You fuse two nodes of a picture by bringing them together into a single one. Any edge joining
them gets bent into a loop at the resulting node, If you fuse @ and y in Fig. 2(a) you get
Fig. 2(b); if you fused z and z, you'd get Fig. 2(c).

D & e e

{a) {bi (<)

Figure 2. Fusion to your house!

Green Hackenbush is completely solved by

THE FUSION PRINCIPLE:

you can fuse all the nodes in
any cycle of a Green Hackenbush
picture without changing its value,

and the fact that a loop at any node has the same effect as a twig there. For example the girl

—— O mmm=

(a) (b} (c)

Figure 3. Sizing Up a Green Girl.

of Fig. 3(a) becomes the green shrub of Fig. 3(b) when we've fused the four nodes of her skirt
and the two nodes of her head, and this becomes a tree (Fig. 3(c)) on replacing the leaves by
twigs. The Colon Principle then shows the tree, and therefore the girl, to have value %2.
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Proving The Fusion Principle

It will take us quite a long time to prove this principle. An alternative, but equally long, proof
using mating functions and the Welter function (see Chapter 15) will be found in ONAG. The
proof here has the advantage of explicitly constructing the winning move. We’ll omit some
purely arithmetic computations which are needed for the proof, but not to find the winning
move.

If there's any counter-example to the Principle, choose one with the smallest number n
of edges, and among counter-examples with n edges, choose one, (7, say, with the smallest
number of nodes (so there can be no legal fusion of any two nodes of G).

First, G can only have one ground node since it never affects play to fuse all ground nodes.

Next, G can contain no pair of nedes a, b, connected by three or more edge-disjoint paths
for otherwise the game H, obtained by fusing a and b, would have to have a different nim-value
and so there would be a winning move in G + H. Whichever of G and H this move is in,
respond with the corresponding move in the other, reaching a game G’ + H’. But since G’ and
H' have at most n — 1 edges, we can fuse any cycles in them to single points without affecting
their values and because there is still a cycle containing both a and b, we see that G’ 4+ H' = 0,
dismissing the supposed winning move from G + H.

No cyele of G can exclude the ground for if G had such a cycle C, consider the position G’
which would remain after Hackenbush moves chopping all edges of C. Then G’ can’t contain
two distinct nodes of C, for these would be connected, in G, by three edge-disjoint paths (two
in C and one in G'). So G’ contains only one node, z, of C, and G looks like Fig. 4(a). Now if
x were the ground we could apply the Fusion Principle to fuse all nodes of the smaller graph
(Fig. 4(b)) and the Colon Principle allows us to fuse these nodes off the ground.

Figure 4. Pulling Cycles to the Ground.

Finally, G contains only one cycle which includes the ground for otherwise it would be the
sum of smaller graphs, since nodes from distinct cycles can’t be joined by other paths. But
we could now apply the Fusion Priciple to the smaller graphs.

We can now see that G must look like a bridge (Fig. 5, though officially we should identify
the two ground nodes) in which, by the Colon Principle, we can suppose that the edges not in
the bridge form at most one string at each node.
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Figure 5. What a Minimal Criminal Looks Like.

The number of edges in the bridge (its span-length) is odd. If a bridge has an even span-
length, consider the sum (Fig. 6) of this bridge with copies of all of its strings. Removing any
edge of the bridge in this is bad, because the resulting nim-value is odd by the Parity Principle.
A symmetry strategy therefore shows that Fig. 6 has value 0 and the Fusion Principle applies.

Figure 6. An Even Span Bridge with Copies of its Strings.

The Fusion Principle for a bridge of odd span-length asserts that its value is found by
adding = to the sum of its strings. So we must show that Fig. 7 has value =,

Figure 7. An Odd Span Bridge with Copies of its Strings.

Certainly no option has value *, because moves in the bridge lead to even nim-values by
the Parity Principle, and moves in the strings can be reversed to = by responding with their
images (after which the Fusion Principle will apply to the smaller picture.
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It will therefore suffice to find an option of value 0. To do this, label the bridge edges
with A or B, giving adjacent edges the same label if there is an odd string between them, and
different lables if there’s an ewven string between. The edges with the (Dewvil’s) label which
occurs an even number of times (B occurs twice in Fig. 7) are bad moves since each of them
can be seen to lead to a sum of two trees and several strings where the nim-value of the sum
is congruent to 2, mod 4, and therefore non-zero. However any of the (odd number of) edges
with the other ( Godd’s) label leads to a sum with nim-value congruent to 0, mod 4. To find a
good bridge move among these, we reduce the graph to a simpler one by shrinking any edge
with a Devil's label to a single point, and halving all string-lengths (rounding down if they're
odd). It can be shown that this reduction also halves the nim-value. Applying it to Fig. 7
leads to the simpler Fig. 8 because 2 halves to 1, 2 £ 4 halves to 3 and 5 halves to 2. A similar
labelling splits the bridge edges into an even (Devil’s) number labelled D and an odd (Godd’s)
number labelled C'. Since in our case there is only one C' edge, it is the winning move in Fig. 8,
and the corresponding edge (between the 5 string and the ground) wins in Fig. 7.

Figure 8. Half of Figure 7.

A More Complicated Picture

Figure 9. Simplifying and Halving Figure 1.

We'll find a winning move in our opening picture, Fig. 1. When we fuse the cycles contained
in or under the girl, dog and house, and evaluate the various pieces we get Fig. 9(a). The
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halving process leads successively to Figs. 9(b), 9(c) and 9(d). The only good move in this
last is the centre span of the reduced bridge. This corresponds to the edge between the tree
and the house in Fig. 1.

Since edges on grounded cycles tend to split the picture up too quickly, the reader who
wishes to bamboozle his opponents will verify that that there are 17 other good moves in Fig. 1:
the bird’s tail, the top left branch of the T.V. antenna, any of the four pieces of foundation
under the house, the lowest twig on the (right of the) tree, the dog’s tail, his face, either hind
leg, either part of the girl’s head and any of the four parts of her skirt.

Green Hackenbush can be applied to the theory of

Impartial Maundy Cake

Impartial Maundy Cake which is played like ordinary Maundy Cake (Chapter 2) except that
either player may divide the cake in either direction. Since the game is impartial, any even
number of identical cakes cancel, while an odd number have the same value as a single cake.

If @ and 3 are the numbers of odd prime divisors of @ and b, counted with mutiplicities, we
shall say that an a by b cake has type
D(a,3) or E(a,f)
according as ab is

odd or even.

The moves that produce an odd number of cakes correspond just to reductions of « or 3.
However, a move that produces an even number of cakes is necessarily from a type E(a, )
cake and gives value 0, s0

D(a,3) and E(a,f)

have the same values as the Green Hackenbush positions

*H t{l""l)

where ;1 = a 1 3.

We shall diseuss Many-Way Maundy Cake in the Extras.
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Blue-Red Hackenbush

Recall that in Hackenbush

bLue edges may he chopped by Left,
Red edges may be chopped by Right,
grEen edges may be chopped by Either.

We've just seen what happens when all edges are green. If no edges of a picture P are
green its value is always an ordinary number. For suppose Left makes a move resulting in
a picture PY, say. Then P can be obtained from P by adding a blue edge which perhaps
supports some other edges and it is easy to see that this has strictly increased the value, so

PL < P < PE forall options PL, PR
By induction, PL and P® are numbers, so P is a number. On the other hand, we'll see later
in this chapter that it can be very hard to work out just which number it is.

Hackenbush Hotchpotch

You'll remember from Chapter 2 that this is our name for Hackenbush when the picture may
involve all three colors, bLue, Red, grEen.

Roughly how big is a Hotchpotch picture? The most important thing to look at is the part
of the picture made up of the red and blue edges which are connected to the ground by other
red and blue edges. We call this the purple mountain; the rest of the picture is the green
jungle (which may have red and blue blossoms embedded in it).

The value of a Hotchpotch picture is
only infinitesimally different from
the value of its purple mountain.

To see this, suppose that the value of the purple mountain is the number z. Then chopping
any edge not in the mountain yields a smaller picture with the same mountain whose value is
z-ish  (“x infinitesimally shifted”)

meaning the sum of x and something like T or * that is infinitesimally small. Moves in the
mountain lead to values that are xl-ish or zf-ish, depending on who makes them. Since these
are more than infinitesimally different from x,

no sane person will chop an edge
in the purple mountain while
there’s any other edge to chop.
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It follows that, from the point of view of all the edges not in it, the purple mountain behaves
exactly like the ground.

The green jungle slides
down the purple mountain!

Figure 10. Sliding Jungles down Mountains.

If you know all about
Purple Mountains
and Green Jungles
you know all about

Hackenbush Hotchpotch.

Flower Gardens

The green jungles that have come nearest to being cleared are the flower gardens which are
sums of flowers and totally green positions.

Figure 11. A Variegated Flower Garden.
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A flower has a stem of green edges supporting a blossom of blue or red petals. Of course
the negative of a flower is another flower of the same stem-length, but with petals of opposite
colors — the first two flowers of Fig. 11 are negatives of each other. By the Colon Principle a
flower with ! blue petals and r red ones has the same value as an equally long one with | — r
blue petals or r — [ red ones according as [ > r or [ < r. So the last flower of Fig. 11 simplifies
to its neighbor. For this reason we shall assume from now on that any blossom is purely red
or purely blue — a geranium or a delphinium

As a flower game proceeds some of the blossoms may be cut right off although part of the
stems remain. You can think of the resulting green strings as grass or snakes — their values
are just nimbers and can be summed by the nim-addition rule to a single nimber, *n.

The Blue Flower Ploy

If there are no red flowers,
at least one blue one, and
any amount of greenery,
then Left has a winning move.

Figure 12. Blue Petals Won't Hurt Left.

For such a position (Fig. 12(a)) is better for Left than the one (Fig. 12(b)) obtained from it
by removing the blue petals, which has a nimber value #n, say. But if n # 0, Left can move
to 0 in this (and so to a position = 0 in the original) while if n = 0 he moves to a position > 0
by taking a blue petal.

Moreover:

If there are no red flowers,
at least fwo blue ones, and
any amount of greenery, Left
wins even if Right begins,

THE TWO-AHEAD RULE
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because Right can destroy at most one blue flower. It follows that the difference between any
blue and any red flower exceeds any nimber, and so:

In a sum of flowers and nimbers,
Left will prefer any move which
cuts a red flower to any move
which cuts a blue flower.

Of course Right prefers all the moves cutting blue flowers to all the ones cutting red ones. Green
edges make good Hotchpotech players more aggressive than Blue-Red Hackenbush players, who
win by conserving their own resources. In the presence of green edges you should destroy your
opponent’s property.

Atomic Weights

In Blue-Red Hackenbush the basic unit of measurement (+1) is the single blue edge — there

is a sense in which Hotchpotch positions can be measured in terms of another sort of unit.
In any sum of flowers and nimbers either player might play aggressively and refrain from

playing on any nimber until all flowers of his opponent’s color are gone. This shows that

a flower garden with at least two more
blue flowers than red ones is positive —
one with at least two more red flowers
than blue ones is negative.

So to a possible uncertainty of 1 or 2 flowers, the total numbers of blue and red flowers are all
that concern us; their shapes are relatively unimportant.

We can say that all blue flowers have atomic weight +1, all red ones atomic weight —1,
and pure green positions make no contribution to the atomic weight.

If atomic weight > 2, then Left wins.
If atomic weight < —2, then Right wins.

For other atomic weights we have to look at the position more closely.

Although the basic unit of atomic weight is the “blue flower”, this is not a precise unit
because different blue flowers certainly have different values. In general the longer the stem-
length of a blue flower the less advantageous it is for Left, and the number of petals hecomes
relevant only for Howers of the same stem-length.

But to the first order of importance it doesn’t matter! A thousand blue flowers is a 1000-
flower advantage to Left and he can win the sum of this position with any position which is a
998-flower advantage to Right, even if the red flowers are bigger and better than the blue ones.
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QUANTITY BEATS QUALITY!

Among Hotchpotch flowers, quantity
is much more important than quality,

except in certain cases where the guantities differ by at most one. Any positions of atomic
weight 0 is infinitesimally small compared to one of atomic weight 2 or more.

Atomic Weights of Jungles

Recall that in a green jungle there may be red and blue edges, but only green edges touch the
ground. For jungles with no red edges we have a slight generalization of the Blue Flower Ploy:

If a jungle has no red edges
and at least one blue one,
Left has a winning move.

THE BLUE JUNGLE PLOY

For if we were to rub out all the blue edges we'd get a pure Green Hackenbush position which
we could evaluate as #n, for some n, using Green Hackenbush theory. If n # 0, Left has a
winning move in this and his corresponding move in the original jungle is at least as good. If
n = 0, Left chops a blue edge.

For more general jungles we'll prove at the end of Chapter 8 that there is a whole number
atomic weight, although this can be quite hard to find. However, for parted jungles, there is a
way, based on “max-flow min-cut” theory.

A parted jungle is a green jungle in which red and blue edges never touch each other.
This is how to look at a parted jungle (Fig. 13). The left set contains all nodes that belong to
blue edges, the right set those belonging to red ones, and there may be other nodes in between
where there are only green edges.

Figure 13. How to Look at a Parted Jungle.

Here's how to work out the atomic weight of a parted jungle.
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First find a mazimal flow from the left set to the
right set along the green edges, treating the ground
as a single node. Then, if you can, enlarge the flow
to obtain as many tracks as you can from the left or

right set to the ground. If this enlargement has n

tracks from the left set to the ground, the atomic

weight is +n; if m tracks from the right set to
the ground, the atomic weight is —m.

THE FLOW RULE

A flow between two sets of nodes consists of a number of green tracks (paths) from the
first set to the second and is maximal if it contains as many such tracks as possible. No two
tracks may share an edge, although they may share nodes, as in Fig. 14, showing a case of
atomic weight +3. The maximal flow has five tracks, a, b, ¢, d, e; the enlargement three more
tracks 1, 2, 3. Thin green edges are not part of the flow, nor are the red and blue edges.
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Figure 14. A Parted Jungle with Atomic Weight +3.

Of course, in the parted jungle you're faced with, the left and right sets need not bhe so
conveniently at the left and right of the picture. What is the atomic weight of Fig. 157 The
camera we've used doesn’t provide enough resolution for you to see the fine structure of those
skulls, but it won’t affect the answer.

Making Tracks in the Jungle

To find the desired maximal flow, first find as many green tracks from the left set to the right
set as you can, using no green edge twice, and put arrows showing the direction of travel on
all the green edges you've used (Fig. 16(a)}). Even if you can’t add a new track to these, you
can’t be sure you've found a maximal flow because you might have started badly.

Now start at the left set and try to reach the right set along green edges possibly using
ones you've already used, but only in the wrong direction, as in Fig. 16(b). If you can do this,
then by deleting any edge you have used both ways you can get a larger flow, as in Fig. 16(c).
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Figure 15. What Do You Find After Traversing the Tracks?
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Figure 16. Retracing Your Tracks.
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If you carry on like this until you can go no further, you've found a maximal flow between the
left and right sets.

To be absolutely sure that this has happened, you can tint the various nodes. The nodes
in the left set are already tinted blue and you tint another node blue only if you can reach it
from a previously tinted node by going along a green edge not in the flow, or backwards along
one that is. You could alternatively tint nodes red starting from the right set, but this time
only allowing yourself to use the flow edges forwards. You can increase the size of your flow
when (and only when) some node gets tinted both colors. When you do have a maximal flow,
you've also partitioned the nodes into three separate sets: those tinted blue, those tinted red,
and the rest.

The atomic weight of the jungle is
positive, mnegative or  zero
according as the ground node is
tinted blue, tinted red or untinted.

If the ground is tinted you can enlarge the flow by adding more tracks between it and the
appropriate set. When trying to find a new track you may, as before, use the edges of the
original flow, provided you do so in the wrong direction. The Flow Rule now tells us that the
atomic weight is the largest number of tracks by which you can enlarge the flow (with sign +
for tracks from the left set to the ground, sign — for tracks from the ground to the right set).

Of course, the enlarged flow defines a whole new set of tints as follows:

Blue tinted nodes are those you can reach from the left set by walking along
unused, or backwards along used, green edges.

Red tinted nodes are those reached from the right set along unused, or forwards
along used, green edges.

But now:

Green tinted nodes are those you can reach from the ground without going in
either direction along an edge carrying a flow direct from blue to red, and without
going against the flow along an edge carrying flow from blue to ground, or with it
along one carrying flow from ground to red.

All other nodes are untinted.

If the atomic weight were negative, of course you would pretend that the ground is blue
when enlarging the flow, and in defining green tinted nodes.

Tracking Down an Animal

Penetrating one particular jungle we found the fabulous beast of Fig. 17. Now let’s work out
those maximal flows. The two arrowed tracks are easy to find and are a maximal flow from
left set to right set hecause we could sever the animal’s head with just two cuts at the base of
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Figure 17. The Red-headed bLue-tailed G-raph (Before).
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his neck. Ford and Fulkerson’s Max-Flow Min-Cut Theorem tells us that we can always check

maximality this way.

Now to enlarge the flow! The ground is tinted blue at the moment because we can get to
it from the tail down either back leg. We must therefore find more tracks from the left set to
the ground. The two back legs will obviously be tracks in our enlarged flow. Is this maximal?

No! By creeping rightwards along the animal’s underbelly until you reach the base of the
neck, back down one edge of the original flow, and then down his front leg, we find a third

track (Fig. 18).
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Figure 18. A Third Track in the Enlarged Flow.

The resulting triply enlarged flow (Fig. 19) is maximal, because there are only 5 green
edges emerging from the monster’s tail. The atomic weight is therefore +3, even though there
are 10 red edges and only 1 blue one. The tints are shown by labels in Fig. 19, untinted nodes
being unlabelled.
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Figure 19. The Red-headed bLue-tailed G-raph (After).
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Amazing Jungle

What is the atomic weight of the Amazing Jungle of Fig. 207 The ground is the shaded
rectangle. (Answer in the Extras.)

Y =0
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Figure 20. Make Tracks Through the Amazing Jungle.
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Smart Game in the Jungle

As experienced trackers we can advise you on good moves in the jungle. They may not always
be the very best ones but they’ll let you (Left) win when the atomic weight is 2 or more, or if
it’s 1 and you have the move.

Figure 21. Parted Jungle with Enlarged Maximal Flow and Tints.

Your jungle, with the enlarged maximal flow and tints, should look something like Fig. 21,
but you should see it as Fig. 22 in your mind’s eye.

*

LY

"

\
i -~
i

Figure 22. Your Mind’s Eye View of Figure 21.

The green tinted nodes are just an extension of the grassy ground and the tracks (of the
flow) which join them to blue or red tinted nodes are like the tangled stems of blue or red
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imbedded flowers. All the other edges are more or less irrelevant, including those on any of
the tracks between the left and right sets which don’t have any green tinted nodes.

What move should you make?

For each imbedded flower the stem edge to chop is the one which crosses the boundary of
the red or blue tinted region, and in general the players should behave just as they do in a
flower garden, aggressively chopping down their opponent’s flowers.

More precisely:

If you've a move leading to a Green
Hackenbush position of value 0, make it
and play Green Hackenbush thereafter.

(Can only happen when there’s just one flower.)
Otherwise, chop down a flower

of your opponent’s color, if there is one,

and if not, chop one of the track edges
where it crosses the boundary of his region.
If this is impossible, then

there’s no edge of your opponent’s color
and you can use the Blue Jungle Ploy

(or the Red Jungle Ploy if you're Right).

JUNGLE WARFARE TACTICS

But beware!! As you play the game the status of the various nodes will change, and you
may have to blaze some new trails through the jungle.

The Jungle Warfare Tactics can be use to prove the Flow Rule. To see how they work, you
must play a few games for yourself,

Unparted Jungles

(a) (b)
Figure 23. Deceptively Similar-Looking Unparted Jungles.
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When red and blue edges touch inside a green jungle, the theory gets very complicated
and we don’t know the answers. The unparted jungles of Figs. 23(a) and 23(b) look very
similar but (a) has atomic weight 0, while (b) has atomic weight +2. The more general theory
of atomic weight in Chapter & can be used to show that every jungle has an integer atomic
weight, but there are great difficulties in extending the max-flow min-cut theory:

HACKENBUSH IS HARD!

Blue-Red Hackenbush Can Be Hard, Too!

The hardness of Hackenbush Hotchpotch arises partly from the poorly understood infinitesimal
values that turn up there. The hardness of Blue-Red Hackenbush is rather different. Although
the values are all ordinary numbers, it may be hard to work out exactly which ordinary number
is the answer. If you're only interested in finding the values of individual pictures, don’t bother
with the rest of this chapter.

Redwood Furniture

A piece of redwood furniture is a Blue-Red Hackenbush picture in which

no red edge touches the ground,
each blue edge (foot) has one end on the ground and
the other touching a unique red edge (called a leg),

for example the bed, chair and climbing bars of Fig. 24.

Figure 24. Some Pieces of Redwood Furniture.

Now:

Any connected piece of redwood
furniture has value
1
on
forsomen =10,1,2,....

THE REDWOOD FURNITURE THEOREM
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This is proved by a reversibility argument in which Right responds to any Left move (which
is necessarily to chop a foot) by chopping the corresponding leg. Let
GLRLR..LR

be the position obtained from G after several such pairs of moves. We assert that

GLRLR.,,LR < a.

RED | BLUE

——— OO e

G _ GLRLR...LR

:
I
]

i

5

Figure 25. How Furniture Reduces in Value.

This is because Left has an obvious strategy when Right starts in Fig. 25, pairing all edges
of —~GLRLR.LE with the corresponding edges in G and the remaining feet and legs in G with
each other.

Since, in particular, every

GLR < G._.

every left option of @ is reversible, showing that G simplifies to a form
{GLRL | GR}

But then since every
GL-HL-R <@

every Left option in this is reversible, and so on, as long as the furniture has any legs to stand
on. Eventually we conclude that

G={0]|GF}
and so its value is the first of
101 1
]-': E': 21 gn

that is less than every GF.

In the remainder of this section it will be handy to count the picture consisting of a single
blue edge as a degenerate piece of redwood furniture. Since the value of this is 1, the Redwood
Furniture Theorem still holds.
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Now:

If there is any move for Right
which leaves a piece of
redwood furniture connected,
then one of these moves is
a worthwhile move for Right.

THE DON'T-BREAK-IT-UP THEOREM

We’d better explain exactly what this means. Since

1 1
{7

any move to a value < 1/2"7! is a move that’s worthwhile for Right (even if he has other
moves to strictly smaller values).

If there were any counter-example to the Don't-Break-It-Up Theorem, there'd be one, G
say, with the smallest number of edges. Since G contains a Right move leaving it connected, it
must contain a red cycle or a red twig (an edge with one end free). Now let G¥ be a worthwhile
option for Right, corresponding to an edge  whose removal breaks G into non-empty portions
G, G3. Since () has fewer edges than &, the Don’t-Break-It-Up Theorem is known to apply
to it, and it has a worthwhile option, removing an edge z', that doesn’t break it up. Let GF
be the Right option of G obtained by removing z’. So G looks like Fig. 26, where 3 is what
remains of G7 when x’ is removed. Let

1 1
Gz=2—p, G;=2—q
so that
1 1
o= o) 5%
1 1
— Ry _ -
¢=1{oc }_{0 = 2e+1}
and | .
R’ 4
¢ E{O 2p+24}

1

. ’
because removing z from GF leaves iF

1
+ 57 But now

R.r
3G < {0

1 1
2p+1 + 2q+1 } 5 G’

showing that G® is an all-in-one-piece worthwhile option of G.
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—

L =

Figure 26. A Minimal Criminal for the Don't-Break-It-Up Theorem.

Now let A be a piece of redwood furniture, with a worthwhile move for Right that leaves
it all in one piece, B. Then
A={0 } B} = %B
since the value of B has the form 1/2" by the Redwood Furniture Theorem. Similarly, if B

has a worthwhile move to C, still in one piece, then B = %C , and so on. By making m such
worthwhile moves we eventually conclude that

A=—2-;1+T,

where T is a piece of redwood furniture which is disconnected by the removal of any red edge.
You should look at this upside-down (Fig. 27) because the red edges, having no cycle, now
form a tree, and the blue ones touch the sky!

Figure 27. A Redwood Tree.

-——— 0 O ——
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Redwood Beds

Figure 28. A Redwood Bed.

A redwood bed is a piece of redwood furniture in which the mattress edges (all red
edges other than the legs) each have just one end at the top of a leg (Fig. 28). Its value will
be of form

L%

Figure 29. Redwood Tree 7" Used in Making the Bed.

where T is a redwood tree obtained by making a succession of worthwhile moves for Right
until any further such move would disconnect the picture (Fig. 29). We assert that

T has value %

If not, let T be the smallest counter-example and let Right make any worthwhile move from
T. The result is a pair of redwood trees. Either these are both smaller trees of the same
type (and therefore have value 1/2) or just one of them has an extra twig (on the left of the
right-hand tree in Fig. 30).
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Figure 30. Two Redwood Trees of Differing Type.

But in the former case

~
I
o~
[
+
b | =
L
I
I

and in the latter

S

1 1
T={0|=4=}=
{of3+ 3}

since the twig must be a worthwhile move (and so halve the value) by the Don't-Break-It-Up
Theorem.

How Big Is A Redwood Bed?

Make worthwhile moves from the hed B for as long as you can without disconnecting it. Since
the tree 7" you obtain has value 1/2, we find
1

1 1
B =0 X5= g1

where m is the number of moves you have made. How big is m?
We assert that m is the largest number of red edges, m’, whose removal keeps the bed in
one piece, T". For, take away these edges one at a time, obtaining a sequence of pictures

B.C, .. T.

Then B<{0|C} =30,  C=<{0|D}=;D,
and so ) )
i
Bz ool = oo

so that m > m'.

To work out the size of a
redwood bed B you must know
what is the smallest redwood tree
in B which contains all its legs.
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How Big Is A Redwood Bed?
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But it follows from the work of Karp (and see also Garey & Johnson) that this problem is “NP-
complete”. Now among those who know them best, such problems are universally regarded as
hard. So

EVEN BLUE-RED
HACKENBUSH
CAN BE HARD!

Would you like to find the value of Fig. 317

Figure 31. A Moderately Hard Bed.
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What’s The Bottle

-

Hackenbush

e ® Dl &

TN S S

.

Figure 32. What's the Bottle?




Extras

Ordinal Addition, The Colon Principle, and Norton’s Lemma

The compound Hackenbush game G, : H at the beginning of the chapter is a generalization
of the ordinal sum, G : H, which can be defined for any two games,

G:H={G"G:H"|G" G:H"}.

In this kind of sum, any move in G annihilates H, while moves in H leave G unaffected. (The
general Hackenbush compound is similar but there may be moves in G which do not annihilate
The Colon Principle,
H>K implies G: H>G: K,
applies in general, and shows in particular that
H=Kimplies G: H=G: K,
so that G : H depends only on the value of H, not on its form. Unfortunately it may depend
on the form of G, because there are games G} = G for which G, : H # G5 : H. This defect
is compensated by Norton’s Lemma (Chapter 8) which implies that G : H is usually almost
indistinguishable in value from G. The lemma asserts, more precisely, that if
G < K, G | K, G>K
then
G:H<K, G:H| K, G:H>K,
unless some position of K has the same value as G.
Most of these properties continue to hold for variations such as the general Hackenbush
compound G : H.

Both Ways of Adding Impartial Games

We know that nim-values are exactly what you need to work out outcomes of ordinary sums
of impartial games. What else is required if you might be taking ordinal sums as well?7 The
answer is: just the nim-values of the options.

If a game has nim-value m and options with nim-values a, b, ¢, .. ., the possible changes in
nim-value are

a=m¥ta, B=mIb, y=miXe, ...

219
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and so we’ll write
{a, by ¢, ...} =ma 5.}

for such a game and call {a, 3, 7, ...} the variation set. The Sprague-Grundy theory tells
us how to “add” this information in the ordinary sense:

Moo} Moty = (MIN) (a8 tbei..}

(nim-add the values and unite the variations). Thus, since {0,1,6} = 25 54y and {0,3,4} =
1{1,25) we have
{0, 1,6} +{0, 3,4} = 312345y = {2, 1,0, 7, 6}.

To add them in the ordinal sense we can use the rule

{a, b, e, ...} {d, e, f,...} ={a, b, c,..., mg, me, my, ...}

where mg, m;, ma, ... are all the numbers not appearing in {a, b, ¢, ...}. For {0, 1, 6} the
missing numbers are mg = 2, my; =3, mg =4, mg =5, mg =7, m; = 8, ... and so

{0, 1,6} :{0,3, 4} = {0, 1,6, 2, 5, 7}

Many-Way Maundy Cake

You can play Maundy Cake in as many dimensions as you like, with reservations of certain of
the dimensions for certain players. Then the value of an

axbxex--- XP X § Xt X - xIxmxmnx--- cake,
in which the dimensions

a, b, c, ... A T S IL,m,n, ...
may be cut by

either player, Right only, Left only,

is
abc--- M(rst--- Imn---) + =(p or p+1)
where M (z,y) is the function of Chapter 2 (Extras), and

p=aipiyt--.

where a, 3, 7, ... are the numbers of odd prime divisors (counting repetitions) of a, b, ¢, ...
respectively. The 1 is added just if abc - - - is even.

The proof involves the sliding of an abstract green jungle down an abstract purple mountain,
the mountain being multiplied by a factor at each stage of the slide!




3
'Y > A 221

*—9

Figure 33. Tracks Cleared Through the Amazing Jungle.

Solution to Figure 15

The atomic weight of the door is 2. The maximum Blue to Red flow occupies all but the
centremost horizontal edges of the roof ridge and the eaves. The nodes where the walls meet
the eaves are tinted Green and the atomic weight of the roof and walls is 0. The maximum
Blue-Red flow occupies both Green hairs by which the shrunken Blue heads are hanging.
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S W X

Figure 34. How to Keep Track Without Losing Your Head.

The left post carries no flow to the ground, but the right one carries a flow from Ground to
Red, so the atomic weight of the three shrunken heads and the bar and posts which hold them
is —1. Therefore the atomic weight of the whole picture is 2 + 0 + (—1) = +1.

Tracks Cleared Through the Amazing Jungle

Kimberly King, who's an experienced tracker, found two tracks (1 and 2 in Fig. 33) from Blue
to Red direet, and a third one (3) from Blue to ground, and you won't be able to find any
more. Therefore Blue is one up, but if he’s to bag his game he’d still better go first.

How Hard Was The Bed?

We have to find the smallest redwood tree in Fig. 31 which includes all the legs. Figure 35 is
the adjacency matrix for the graph formed by the two top rows of nodes and the edges which
connect the legs. It is not enough to include just three of the top nodes, since only two of
them (columns 3 and 7) are on three edges, and 3+3+42=8 edges are not enough to connect the
seven legs, which would need 7+(3—1) = 9. If we use four top nodes, then 7+(4—1) = 3+3+2+2
and we can manage with columns 3 and 7, just one of columns 5 and 6 (in order to connect
the third leg, row 3) and just one other (column 1, 2 or 4). So, of the 16 connecting edges,
only 10 are really required, and 6 can be removed, and the value of the bed is

26+1 7 198
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1 2 3 4 5 6 7

11111 {0]1]0|0]0
21110]1(0]0]01]0
310(0]0j0(1]1]0
4101111 (0]0]0]0
510(0]1]0[0]|0]1
61010011 ]1]0]1
71010]010]0 |11

Figure 35. Coverlet for the Moderately Hard Bed.

NP-Hardness

Throughout this book we try to help you to acquire winning ways. We consistently focus our
attention on those games which have enough structure for us to help you acquire tools and
technique so that you can beat your friends consistently until they've read the book too. When
both sides have read it, fair competition is again possible, but with a much higher standard
of play.

Many combinatorial theorists have made a quite different approach. Instead of studying
particular games for which clever strategies can be demonstrated, they try to prove that certain
classes of games are hard in the sense that any algorithm for playing all of them correctly
must necessarily take a very large amount of computation. In some sense this approach is
complementary to ours. Every positive result, consisting of a constructive strategy of the sort
we seek, opens up a question of generalization: can the same techniques be used to solve some
larger class of games efficiently? Every negative result, consisting of a proof that any algorithm
which solves all the games in some large class must be complex in some sense or other, opens
up a question of specialization: what subclasses of the large class of “hard” games are really
hard, and which are “easy”? Typically the “hard” class of games contains infinitely many
hard games, but it’s often true that all the games of such a class which satisfy some additional
conditions are “easy”. Sometimes there is even a known algorithm which solves most of the
games in the “hard” class very quickly and efficiently, but it requires an inordinately long time
to solve a relatively small subset of these games; this small subset makes the class “hard”.

Complexity theorists have established a hierarchy of classes of problem which are compu-
tationally “hard”. One of the strongest definitions is EXPTIME, those which are “complete
in exponential time”. This means that any algorithm which can solve all the problems in
the class has the property that its running time, measured as a function of the length of the
input needed to define the problem, is greater than an exponentional function of this input
infinitely often. Stockmeyer & Chandra have introduced a game called PEEK and several
games on Boolean formulas which they were able to prove were EXPTIME complete. The
EXPTIME completeness result was extended to chess by Fraenkel & Lichtenstein, and to Go
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and then to Checkers by Robson. All of these results involve the construction of a single
complicated position.

Several other classes of games appear to be just as hard, but no one has yet been able to
prove whether they really require exponential time (infinitely often) or not! The two most
important such classes are problems which are “complete in PSPACE” and problems which
are “NP-complete”. For precise definitions see the beautiful book by Garey & Johnson. Even
& Tarjan have shown that Generalized Hex is PSPACE-complete and Schaeffer has done
the same for Generalized Geography, Generalized Kayles, Col and Snort. Fraenkel and others
found that N x N Checkers is PSPACE-hard and PSPACE-complete for certain drawing rules;
Lichtenstein & Sipser that N x N Go is PSPACE-hard; and the analogous result for Chess
was obtained by Jim Storer at Bell Labs. Yedwab showed that some sums are PSPACE-hard
and Moews found this to be so even if every summand is a very simple 3-stop game. Their
results were applied to Go endgames by Wolfe, based on the techniques introduced in the book
of Berlekamp & Wolfe. Problems known to be at least as hard as NP-complete problems are
said to be NP-hard. Fraenkel & Yesha have shown that their annihilation games are NP-hard
and more recently the Demaines & Eppstein that not only is Phutball (Chapter 22) NP-hard,
but it may be hard even to determine whether you have a winning jump.

Problems which are complete in exponential time are PSPACE-hard, and PSPACE-hard
problems are NP-hard, but it’s not known if the converses to either of these statements are
true. It is known, though, that a good algorithm for solving any NP-hard problem would solve
all problems which are NP-complete. For example, we've seen in this chapter that any good
algorithm for evaluating arbitrary Blue-Red Hackenbush positions could be modified to give a
good algorithm for finding the minimum spanning tree of a bipartite graph. Moreover if some
miraculous hypothetical algorithm to evaluate Blue-Red Hackenbush positions had a running
time which was bounded by a polynomial function of the length of its input, the same would
be true of the derived algorithm for finding a minimal spanning tree. Since this latter problem
is NP-complete, the problem of evaluating Blue-Red Hackenbush positions is NP-hard.

By following ideas pioneered by Cook and Karp, Garey & Johnson have uncovered a
very wide range of combinatorial problems which are NP-complete. An asymptotically good
algorithm for solving any of these problems could be modified to yield a good algorithm for
solving any of the others. Many famous mathematicians and computer scientists have tried
very hard to solve some of these problems, and without success. Thus:

If you can prove that a game is
NP-hard, you can be confident
that, as of 1999, no one knows
an asymptotically good algorithm
for solving it.

Our thermography-based strategy in Chapter 6 requires only a small amount of compu-
tation to find near-optimal moves in the sum of any number of short hot games. THER-
MOSTRAT yields millions of optimal moves, only a few sub-optimal ones. But if you always
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insist on finding the very best move, you will have to do a lot of computing, because Lockwood
Morris has found a way to construct some rather short hot games whose sum is NP-hard.

In Chapter 16, we’ll prove, in a formal sense, that Dots-and-Boxes is NP-hard. However,
notice that this asymptotic result says little about the difficulties of calculating good strategies
for playing games on boards of sizes small enough to be interesting. In fact most of Chapter
16 is devoted to exhibiting such strategies. Indeed, we consider the class of Dots-and-Boxes
positions which we prove to be NP-hard to be a rather degenerate, relatively dull subclass of
end-game positions. Some people consider a class of problems “finished” when it has been
shown to be NP-hard. Philosophically this is a viewpoint we strongly oppose.

Some games which are NP-hard
are very interesting!

It may be possible to find strategies for playing such games which will enable you consis-
tently to beat opponents who haven’t read this book; Dots-and-Boxes is an excellent example.

The Bottle at the End of Chapter 7

The bottle at the end of Chapter 7 is 7.7, together perhaps with some additives of no atomic
weight.
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The jury all wrote down on their slates, ‘She doesn’t
believe there’s an atom of meaning in it
Lewis Carroll, Alice in Wonderland, ch. 12.

There are many games, such as
*=0]0, T=0]x, #2 = {0, | 0, %}, tx={0,* | 0}, e

in which both players have legal moves from every non-terminal position. This prevents num-
bers such as

1={0]}, -3={] -2}, .

from arising, and in fact ensures that all the positions have infinitesimal values. We'll call such
games all small.

- - -

Figure 1. Another Flower Garden.

229
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Figure 1 shows a Hackenbush Hotchpotch flower garden. Recall from earlier chapters that
although

bLue edges may only be chopped by Left, and
Red only by Right, any
grEen edge may he chopped by Either,

so since the only edges which touch the ground are green, both players will have legal moves

if anything at all remains of the picture. Hackenbush flower gardens are therefore all small.
You don'’t need to have read Chapter 7, which dealt with complicated Hackenbush positions,

because the simple properties of flowers which we use now will be redeveloped as we want them.

Uppitiness and Uncertainty

The small games that occurred in Hackenbush Hotchpotch (Chapter 7) have values that can
be expressed as a whole number of flowers or an equivalent number of ups. In this chapter we’ll
show that every small game has a certain atomiec weight which can also be called its uppitiness
since it tells us what number of ups it’s most nearly equal to.

Even in sums of Hackenbush Hotchpotch flowers there’s a fundamental uncertainty of 1 or
f which makes a complete analysis very hard. What we can say is that an advantage of 2
or more flowers is enough to win even if the opponent has the next move. One or no flowers
may or may not suffice because then the players must prepare to ficht a Nim-like battle over
stem-lengths, in addition to their main aim of weeding out the opponent’s color. In fact when
all earthly blooms have faded, the stars will still remain, and the outcome will depend on the
resulting Nim-game value.

Much the same can be said even about the all small games that do not arise in Hackenbush.
Every such game g has a definite atomic weight (7, and

if G = 2, then g > 0.

DOUBLE-UP TO BE SURE

On the other hand, an atomic weight G of 0 or 1 may not be enough because of the subtle
Nim-like problems embedded in g.

We can reduce the amount of uncertainty, but at some cost, by adding a very large Nim-
heap. Since this has value * N for some large number N, we shall call it a remote star. Since
the exact value of N doesn’t matter provided it’s large enough, we’ll use a special symbol,

ﬁ (“far star”)

for any remote enough star. It turns out that

g+ ﬁ > 0 exactly when G > 1.
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So if Right starts when a remote star is present, an atomic weight of at least 1 is not only
sufficient, but also necessary, for Left to win.

The remote star stops us from having to worry about the exact structure of the Nim-like
part of the game, since from a remote enough star we can reach any desired nimber,

0, =*1, =2, =3,

To know the outcome of

g+ K

what you need is just
the
atomic weight of g.

In general we’ll use small letters for small games and large ones for their atomic weights.

Computing Atomic Weights

Calculating atomic weights is very like cooling by temperature 2 (Chapter 6) except that we
must occasionally compare g with the remote stars.
Suppose that

g={abc...|def .}
and that we already know the atomic weights
Aofa, Bofb, Cofe, ...; Dofd Eofe, Fof f,...

then:

the atomic weight G of g is
Go={A-2,B-2,C-2,...| D+2, E4+2,F+2,.. .}

unless Gy is an integer and

either g > or g < ﬁ

In these eccentric cases:

ifg > ﬁ' , G is the largest integer for which

GaD+2 GaE+2 GaF+2, ...
it g < ﬁ, G is the least integer for which
GIA-2 GI>B-2, GI-=C-2, ....

THE ATOMIC WEIGHT CALCULUS

We'll usually write just
G=“{A-2,B-2,C-2,...|D+2,E+2F+2,..},

the quotation marks indicating that proper care must be taken in the eccentric cases.




232 It's a Small Small Small small wors

How remote should ﬁ' be?

*N will already serve as a remote star
for g, provided that no position of g
(including g itself) has value =N.

Thus *2 is remote enough for 1= 0 | #, and so, since
T > %2, we can write T > ﬁ’
Similarly #(m+1) is remote enough for *m, and since
#¥m || *(m+1), we have =m || ﬁ
This is enough to show that

every nimber *m has
atomic weight 0.

for if we know this of 0, *1, #2, say, then since =3 || % , our formula gives
Go ={0-2,0-2,0-2 | 0+2,0+2,0+2} = 0,
for the atomic weight of
#3 = {0,*1,%2 | 0,1,%2}.
On the other hand,

1+ has atomic weight 1,

because although we find
G=“0-2]|0-2}" =*{-2]2}"

1> %X

and so we must choose the largest integer <110 + 2, namely 1.
Let’s check that |+ | 0 =l has atomic weight —2, as it should. Our caleulus gives

G= ;c{_l . 2 | [] + 2}!! — “{'—3 | 2}!!

< %

we must choose the least integer | —3, namely —2.

we have an eccentric case

but since
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Eatcake

Eatcake is a game due to Jim Bynum. It is the disjunctive version of Eatcakes, which we
will meet in Chapter 9. A number of rectangular cakes (initially just one) are on the table,
ruled into 1 x 1 squares. At his move Left (Lefty) must eat a vertical strip of width 1 through
just one of these cakes, thereby probably dividing it into two smaller cakes. Right (Rita) eats
horizontal strips in a similar way.

So that you don't have to keep asking Mother to bake more cakes, Bynum suggests you
play his game with ordinary playing cards. In Fig. 2 you see Rita making the second move of
a game.

Figure 2. Rita Making the Second Move in a Game of Eatcake.

Bynum made a case by case analysis of all sufficiently small starting rectangles and empir-
ically discovered that the outcome depends only on the parity of the two edge-lengths. This
was proved in ONAG (pp. 201-204) where it is shown that the values of rectangles are as
shown in Table 1(a),

1 2 3 4 5 6 1 2 3 4 5 6 7

L[ * ~g1 * —41 * 91 Ll | | |
2o * 92 | 92—gqit* g3 |gs—qnt+*|2 |+ ||+ ||+ ||+
3 — 92 * g2 * 92 30 | | ' |
4191 | g1-got* | go * 9s | gs—gat x| 4 |+ |+ I |+ 1]+
5 % —g3 * g3 * gs 5 || || ” H
6o | g1—gs+*| g2 | g2—gat+* | gs * 6 1+ |+ 1+ ]+
T I I |

Table 1. (a) Values of Eatcake. (b) Outcomes of Eatcake.
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where the games g; are defined by

g = 0]*=1

2 = {nt+ta | *},

g5 = {o1+92,92+91 |},

9¢ = {91+93.92+92,93+01 | ¥},

g5 = {91+91,92+93,93+92, 91+ | %},
and in general

gn = {91+ 9n1,92+Gn2, .- G191 | *}.

What are the atomic weights of these? We know that

g1 =T has atomic weight 1, and so
ga :ﬂ| * has atomic weight {2 — 2 | 0+ 2} =1, then
g3 = {91192 | *} has the same atomic weight {2 — 2| 0+ 2} = 1,

and by induction so do g4, g5, ... .

When vou're playing a game of Eatcake you can use Table 1 to evaluate the position in
the form

Ga+gp+ - — ge— - (4 * , possibly)

and since all the g; have atomic weight 1,

if there are at least 2 more
positive g; than negative ones,
or at least 1 more and Left
has the move, then Left can win.

For the further analysis, it's wise to let
gn=h1+ha+---+ hy
The h; are positive infinitesimals with very interesting properties (see ONAG, pp. 203-204).

Splitting The Atom

Atomic weights are usually whole numbers, but not always. For example,
1 || has atomic weight {2 -2 | -1+2} =0 1= 3
and more complicated numbers can also happen. But atomic weights needn’t even be numbers:

1|4 has atomic weight {2 — 2| -2+ 2} = {0 | 0} = %, and
3.1] 3.0 has atomic weight {3 —2 | =342} = {1 | -1} = 1.
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But they still add up nicely:

If g, h, k,... have atomic weights G, H, K, ...,
then g + h + k + - - - has atomic weight G+ H + K + - --

For example,

1
i |J. + 1 |i} has atomic weight 3 + *,

In a moment we’ll see that some quite interesting atomic weights arise in the game of Childish
Hackenbush Hotchpotch. But first

Turn-and-Eatcake

This game was introduced in ONAG (pp. 199-200) where it was described as the twisted form
of Bynum’s Game. It is played just like Eatcake except that before eating a strip, the player
must turn the appropriate cake through one right angle.

1 2 3 4 5 6 7 8 9 1011 12
1| = * Tz T2 T % 12 12
2000 L 0 120 |4 01 0 Jp0
S S e I 12
41120 J20 §30 [J20 J20 |30
5 4248, 42 4342, 43
61120 120 J20 [J20 J20 |20
A e T e
8 0 L 0 Jz30 |} 0 ) 0 [30
il N e
W0 ]120 Jo0 Jo0 J2 0 Jo 0 J2 0
11 42 48, 42 4342, 43
121020 J20 J30 [J20 J20 [30

Table 2. Most of the Values in Turn-and-Eatcake.
Except for rectangles having a side of form 6n+5 the values have period 6 (Table 2). The
games

12= 10 || +%} (pronounced “up second”), and
1t3={0|l + l2 ++} (pronounced “up third”)

behave as if they were indeed the square and cube of 1, so that:

any number of copies of 12 add to less than 1
any number of copies of 1 add to less than 1?2




236 It's a Small Small Small small wors [ Y

We've written
12 (“down second”) and |3 (“down third™)
for the negatives of 12 and 13. These games have atomic weight 0.
In the rows corresponding to an edge-length 6n+5 the entries, after the third, have period
12. For the entries missing from Table 2 the other edge-length is odd and the value is

(a multiple of 1) + =
| 1 | 3|5 7 | 9 |u| 13 | 15 |17] 19
R e R RN R EEE R e
( Column entries missing from Table 2 are the negatives of these, i.e. they have | in place of 1.)
As you can see, the multipliers involve stars and fractions. We’ll show you how to define

general multiples of 1 later in this chapter. The only non-integer multipliers which arise in
Turn-and-Eatcake are

6n+5

w4 =1 |l} which has incentive (2+ #)- T 4=

%-1‘+* =1 1%- J, which Ihas irlvcentivle (1%)-1‘ +%
5-T+# =1 |l which has incentive (1 E)-'E‘ + %

You should choose between them in this order and prefer to move in one of these (or its

negative) rather than elsewhere.

Beware! It is not true that 12< iT
and it is not true that t#=1-1

All You Need To Know About Atomic Weights
But Were Afraid To Ask
Although it’s quite hard to prove things about atomic weights, they're very easy to use, because

they usually turn out to be whole numbers. Here's a complete list of properties; big letters
are the atomic weights of the corresponding little ones:

If G =2 then g =0,
If G< -2 then g <0,
If G0 then g =0,
If G0 then g<10.

G>1 justif ¢ > ¥X.
G<-1 justif g< ¥X.
~1aGal justif g | ¥X.

And remember that for

g=1{a,b,ec,... | de f,...}
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our Atomic Weight Calculus gives
G={A-2,B-2,C-2,...| D+2,E+2, F+2,.. .}

except in the eccentric cases when this is an integer and

either g > ﬁ G = largest integer < all of D+2, E+42 F42 ...
or g < ﬁ G = least integer I> allof A-2, B-2,C—-2,....

Also

g+h+k+... has atomic weight G+H+K+. ..,
—q has atomic weight —G.

We'll be back to prove all these results after a childish interlude.

Childish Hackenbush Hotchpotch

Like other variations on the Hackenbush theme, this game is played on a picture with colored
edges. This time each edge is either red or blue or green. Just as in ordinary Hackenbush
Hotchpotch, Either player may remove any grEen edge along with all other edges no longer
connected to the ground. Alternatively, Left may remove any single bLue edge but only under
the childish condition that its removal does not disconnect any other edge from the ground.
Similarly Right may chop a Red edge only if it leaves all other edges connected to the ground.
Observe that the childish condition applies only to the red and blue edges, not to the green ones.

Left and Right can’t remember whose turn it is to move next in the Childish Hackenbush
Hotchpotch position of Fig. 3. Daoes this matter?

Figure 3. Does it Matter who Gets First Lick at the Lollipops?

Except for the rightmost summand, the position is a sum of lollipops made of red and
blue loops supported by a number of green branches each of which connects the base of the
loop directly to the ground. The value of a grounded loop made of 242 blue edges joined at
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the top to y+2 red ones is {z | —y}, good moves being as shown in Fig. 4. Each player chops
his lowest edge because this allows him to play all but one of his remaining edges at leisure,

x+2

y+2

~ /

L - ——

Figure 4. A Childish Hackenbush Loop Worth {z ‘ —y}.

For the childish lollipop made of such a red-blue loop supported by n green edges, we'll
use the symbol

{:I‘ | _y}'n
From this game Left has only two plausible moves:
to {z | —Yna or (z),
where (z), denotes a picture of value = supported by a sheaf of n green edges. Since Right
has a similar choice of moves, we have

{2 | ~ytn = {{z | ~yhnr, @ | {2 | ~y}na, (~9)n},
and similarly

(@)n = { @)1, (@) | (@)na, (@)}

In this notation, the six lollipops of Fig. 3 have values

{1]|0}+ {0] -2}5 {0] —1}4 {1]-1}4 {4] -1}, {0|0h

and you can check that the non-lollipop at the end has value (%)1

Atomic Weights of Lollipops

If z is an integer, the position (z), is actually a grown-up Hackenbush Hotchpotch position
whose atomic weight is
n, 0 or —n,
according as
z2=>0, z=10 or z <0,
(Work this out for yourself, or use the flow method of Chapter 7.)
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We can now use the Atomic Weight Calculus to find the atomic weights of all Childish
Hackenbush lollipops. When & = y = 0, we have

{o]o}. | ¥X for all n, and so it has atomic weight 0.
In the more interesting case x > 0, y = 0, we have

{z [0}, > %,
and so we can work out the atomic weights:

game atomic weight

{z |0} *{1-2 | 0+2}” = 1, an eccentric case,
{z]0}, {2-2|042} =1,

{0} {1]2} =13,

{z |0}y {22} = 24,

{z|0}s {3|2}=2L+1

{z|0}s {4]2}=3=%1,

{e|0}r {5|2}=35+13,

In the most common case with > 0, —y < 0, we have

(x| -y} | X

and so:

game atomic weight
{z|—yh {1-2|-142} =0,
{z | —yt2 {2-2| —2+42} = «,
{SL’ —y}g {]. —1} = :l:]...
{o | —y}s {2 | -2} = %2,
{z|-y}s {3| -3} =3,

From these results we can find the atomic weights of all the components in Fig. 3, respectively
33+17 2741 —2x +2 * 0 1
corresponding to the values
{1[ o}z {of-2}s {o]-1} {1|-1}a {4]-1}2 {0][0} (3)
so that the atomic weight of the whole figure is precisely

1
21+ -,
2

If we were playing the resulting game of Cashing Cheques (Chapter 5) on these atomic
weights the first player would clearly win with a full move to spare, so writing

g:{a,b,c,...|d,8,f,---}
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for the sum of everything in Fig. 3 we can suppose

A=1 and D < —1.

Now since A = 1 implies a > ﬁ and D < —1 implies d < ﬁ, the optimal strategy in
the Cashing Cheques game would also ensure a win for the first player on the sum of Fig. 3
with a remote star. But what, if anything, can we deduce about the outcome of Fig. 3 alone?
Since some games of atomic weight 1 are positive (e.g. 7) but others are fuzzy (e.g. T%) we
can’t say for sure that a move to a position of atomic weight at least 1 is always good enough
to win for Left.

Nevertheless we can assert (and prove!) that the first player can win Fig. 3 and only by
optimizing the atomic weight. The reason is that a remote star actually is present! The
lollipop of atomic weight 0 has value

{[]|[]}1 = (#1); = =2,

and with respect to everything else in the figure, #2 is remote!

Proving Things About Atomic Weights

Proving things about atomic weights will take us quite a long time, so if you only want to use
them, why not just play a few more childish games while you're waiting for the rest of us to
finish the chapter? You don’t have to follow the proofs!

We can use Hackenbush flower gardens to make the proofs look easier and prettier! To
be quite precise we'll define a flower to have a green stem of at least one edge, topped by a
completely blue or a completely red blossom which must also have at least one edge (petal).
A flower garden is any position made up of flowers and possibly some purely green grass (or
snakes!) as in Fig. 1.

Recall the rules saying who can chop the various colors of edge and that after each chop
we remove any edges no longer connected to the ground. So that you don’t have to reread
Chapter 7, we'll remind you here how to play well in flower gardens.

Playing Among the Flowers

If your garden has no flowers, then each piece of grass (or snake) has some value #n and you're
really playing Nim (Chapter 2).

If there’s a blue flower but no red ones, then Left, if he has the move, can win as follows; if
there is a winning move in the Nim-position got by ignoring the blue petals, he should make
it. Otherwise he should pluck a blue petal, and leave this awkward Nim-position for Right.
Any blue petals that remain won't hurt Left. (This is the Blue Flower Ploy of Chapter 7.)
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In more general flower gardens:

Left can win if he has the move
and is at least 1 flower ahead

(G=1)

THE ONE-UPMANSHIP RULE

Left can win without the move
if he is at least 2 flowers ahead

(G =2)

THE TWO-AHEAD RULE
These are particular cases of
THE ATOMIC WEIGHT RULES:

if G 1> 0, then g > 0;
if G =2, then g = 0,

but can be proved directly, for if the position has 2 more blue flowers than red ones when Left
presents it to Right, it will still have at least one more when the turn reverts to Left. He can
then either restore his advantage by chopping down a red flower or use the Blue Flower Play
if no red flower remains.

When is g as uppity as n?

We'll reserve the name flowerbed for a flower garden that has just as many blue flowers as
red ones:

When your garden is BalancED

With just as many Blue as tED

We shall call it a lowerBED.

Since the blue and red flowers cancel, we want to say that a flowerbed has atomic weight 0.
But we can’t use the notion of atomic weight before we prove things about it, and so we'll
define g and h to be equally uppity and write g = h exactly when there are flowerheds f;
and f5 for which

h=zg—h=f

Two games are equally uppity just
if we can trap their difference
between two flowerbeds.
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Obviously
g=nh implies g+k=h+k

and, because the sum of 2 flowerbeds is a flowerbed,
g=h and h=%k imply g==k&.
If we can only find a single lowerbed f for which

g—h=f

we’ll say that g is at least as uppity as h and write g 2 h.
If g is exactly as uppity as some multiple of up, say

g=G1

we'll say that G is the uppitiness of g. It will take us quite a long time to prove that this is
just the atomic weight. Note that any flowerbed f has uppitiness 0 since

fz2f-01=Ff
Taking g to be any blue flower, and A& to be 1, we have
g—h=Ff

for the flowerbed of Fig. 5. This shows that:

any blue flower has uppitiness 1.

- his alittle
geranium
and a blade
of grass,
total value

gis any
blue flower

Figure 5. The Flowerbed f.

[Note that flowers of stem length 1, with just one petal, are geRaniums Red or deLphiniums
bLue, whose values are |* or T.]
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Go Fly A Kite!

We'll need to show that it doesn’t matter which remote star you use when computing the
atomic weight of g. In Hackenbush, a remote star is just a long piece of green string and we
can in fact show that provided it's long enough it doesn’t matter at all what’s on top of it.
You might as well go and fly any kind of kite (Fig. 6).

Figure 6. The Kite Strategy.

We'll show that Left can convert a winning strategy for
string + g

into one for
kited string + g

provided that the string is so long that its value is distinct from all the values of positions in
¢ (this is the exact meaning of “remote”).

Left should just ignore the kite and play his old strategy until Right moves in the kite,
when, since we're ignoring the kite, it's just as if he's made no move at all. But since Left's
strategy wins if we ignore the kite, the position

kited string + h

that Right just moved from had
string +h >0

and therefore
string +h =0

since
string # h,
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Left therefore had a winning move in string + h, and since Right’s move has affected neither
string nor h, this move is still available and Left can continue with his strategy.

In the colon notation introduced in the Extras to Chapter 7, the value of a kited string
is string:kite. Our argument actually proves Norton’s Lemma (more precisely stated there)

that for any S and K, the games S and S : K have the same order relations with every game
that has no position of value S.

All Remote Stars Agree

The all green kite in

... has the same =11 4 g
outcome as ...

shows that

provided that no position of g has value #7. More generally,

if neither =m nor =n is
the value of any position
in g, then the outcomes
of ¥m + ¢ and *n + g are
the same.

This justifies our use of ﬁ for all remote stars:

[ ?ﬁ? means g > *m
g < Sﬁ% means g < *m
g ﬁ means g |l ¥m

for any +m which is not the value of any position in g.
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Large and Small Flowerbeds

Figure 7 shows that any flowerbed f is less than a 2-flower flowerbed in which one of the
flowers is a very tall red one. This is because it doesn’t matter what's at the top of a very long
string and so we can change the tall red flower into a tall blue one, making Left two flowers

ahead.
... and
. has :"s
“f " ihe -y e
same .
outcome 0::_'m
e come
as ...
Figure 7. When a Flower’s Very Tall You can Hardly See Its Petals.
For a large flowerbed
You need just one tall red.
And

Your bed will be small
‘When the blue flower’s tall.

Since we now know the largest and smallest flowerbeds, we can simplify our uppitiness test.

The games g and h will be equally uppity only if

(for tall enough flowers) or, simpler still, if
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\\ .

te + % 38-h3 o+

(for remote enough ﬁ) We call this the Remote Star Test.
When comparing remote stars with sums of other games, it is wisest to take

ﬁ = =N

where N is the power of 2 next greater than all the m for which *m appears in the other
games, because then

m<N, n<N imply mfn < N.

Playing Under a Lucky Star

If you find yourself playing the sum of ordinary games and one remote star, you're lucky,
because

in the presence of a remote star,
you can exchange a game for any
other of the same uppitiness.

THE EXCHANGE PRINCIPLE
In symbols, if g = h, then
g+ ﬁ has the same outcome as  h + ﬂ?
It will suffice to prove that if ¢>h and

Left can win h+ tall red flower,
then he can win g+ tall blue flower,

for the Kite Strategy shows that we can replace these tall flowers by remote stars without
affecting outcomes.
But then because

g — h > some flowerbed, f,
we have

(g+ tall blue) — (h+ tall red) = f+ (2 tall blues),
and this is positive by the Two-Ahead Rule.
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General Multiples of Up

We're now almost in a position to prove that the Atomic Weight Calculus gives the right
answers. What we've got to do is to show that when the rule says that the atomic weight of
g is G, then

g=aG-1

or, by the Remote Star Test, that

Pt B >g- G121+ X

But since atomic weights need not be integers we'll have to say just what we mean by G- 1
when G is a non-integer game such as

{n|1}=%, {00} =% or {1]-1}==%L,

as well as integer ones such as

(] y=2 (|-3=-4 o { | }=0

Simon Norton has shown how to define such multiples G - U for any positive game V. When
we put [/ =1 his definition reduces to

Gt ={G5 1 + 1+ | GR1 + Ux)

But this formula must only be used for non-integer games G—if ¢ is an integer you must
use the obvious rules:

2T=1+1, (4)t=l+1l+l+l 01=0
For the non-integer multipliers
T={0]1}, *={0| 0}, +1={1|-1}

we find

%.1‘ = {01+ | L4+ U = {f= [ U],

*1 {01+ 4 [ 0.1+ U} = = [4},
(£1).1 {144 i | (=1). 1 4 Jx} = {3.1%

3. 1x}.

In the Extras we’ll give Norton’s definition of G - U for all positive games U and show that
(A+B+C+--)-U=A-U+B-U+C-U+---

and in particular

(A+B+C+--)t=A1+BT4+C-1T+---
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Proof of the Remote Star Rules

One of the things we've got to prove about atomic weights is that

G=1 exactly when g> ﬁ
from which, by symmetry,
G<-1 exactly when g < ﬁ'
and so
19 Gal exactly when g | ﬁ

Of course we can suppose these results for all the options of
g={ab,ec,... | d.e f,...}
We suppose first that g > ﬁf‘&' and show that Right has no good move in G — 1 (i.e. that
G > 1). Because Right has no good move in g + ﬁ? we know that

di> 9%, el 9%, fi> Y%, ...

D -1, Epr= -1, Fir -1, ...

If G is not an integer, Right won't move in the component —1 (“never move in an integer
unless you have to”) so his move is to one of

(D+2)-1, (E+2)-1, (F+2)-1, ..., al =0
If G is an integer, it is the greatest number
<l all of D+2 E+42 F+2

and so

so that we can suppose
G+1>D+2, say,
so that
G>D+4+11-1+1=0.
But an integer 1=01is = 1.
Of course we could also have shown that
g < ﬁ implies G<-1

Now we suppose that G = 1 and we’ll deduce that g = ﬁ By the previous remark we

cannot have g < ﬁ So if our statement fails we can only have g || ﬁ' and can therefore

suppose that
G={A-2,B-2,C-2,...| D+2,E+2,F+2,...}

Because ¢ > 1 we must have
laD+2,E+2,F+2,...
that is,

Di>-1, Ei>-1, Fi>-1,

d+ﬁ7 e+ﬁ, f+ﬁ,

are all > 0. But since g || ﬁ , Right has some good move from g+ ﬁ This must therefore
be to

and so

g+ #=m for some m.
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We'll show that this cannot be. Because G # 0 we cannot have all of
A-2,B-2,C-2,... 20
and so can suppose
A-2=0, ie. AZ=2

Left can therefore move from ¢ + *m to a + *m and win by the Two-Ahead Rule.

Proof That Atomic Weight = Uppitiness

We suppose once again that
g=1{ab,ec,... | doe f,...}

where the atomic weights
ABC,....DEF ... of abe ... de°f,...
have already been shown to coincide with their uppitinesses, or, in symbols:

a=A1, b=B-1, c¢=C-1
d=D-1, e=ET, f=FT,

We want to prove that
g=GT,

where (7 is the value given by the Atomic Weight Calculus.
By the Remote Star Test for uppitiness, we only have to prove

T+ I 29— Gtz e+ B

and by symmetry it will suffice to show that Right has no good move in

(G-t + 1=+ FX) — g.

Observe that we always have
A-2,B-2,C-2,...aGaD+2,E+2, F+2,...
even in the eccentric cases when (G is not defined as

{A-2,B-2,C-2,...| D+2,E+2,F+2,...}.

Suppose Right moves from the component —g, to —a, say. Then since we have a lucky ﬁ',
the resulting position can be exchanged for

(G-1+t++ I¥) — A1
But G > A—2, so this game has the form

Xt lr+ WY

for some X |=0. If X is an integer we have

XA+ bt T 24 b+ B =5+ K
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from which Left has a winning move to 0. Otherwise there is some X > 0 and Left can move
to

(XL + 1)+ b+ X >1+¥% > 0.

Now we must consider Right’s other moves from

(G +t+ ) - g
namely those in the parenthesized portion. Fortunately—see the Star-Shifting Principle in the
Extras—we can simplify the parenthesis to

{(GE 1+ o)+ 1+ X [ (GR1 + b+ 1+ D)}

When G is a non-integer, this is

{(A+1J-T +¥X (B + YK, | D+ + ¥ (E+1)-1 +ﬁ}

and when  is
—4 -3 -2 -1 0 1 2

(U478 | 0} {L+F% |0} {FX |0} + FX {0 | TRI{O [t +¥X} {0 [t +7X}...

There are four cases:
In the non-integer case we can suppose Right moves to

(D+1-14%) -9

it becomes

from which Left should move to
((D+1)-1‘ +ﬁ) —d
which we can exchange for
(D+1)-1 +ﬁ — D=1 +ﬁ' > 0.
If G is a negative integer, Right can only move to
*M — g

for some #m (indeed #m = 0 unless G is —1). But in this case we have g < ﬁ and so can’t
have G = #m, so Right's move was no good.
If G is zero, Right's move takes him to
-9

But, unfortunately for him, we have g || ﬁ in this case.
If G is a positive integer, Right has moved to
G1+¥X - g

But in this case G was the largest integer for which

GAD+2,E+2 F+2,. ..
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so that we can suppose
G+1=D+2, say

Left can now move to
G-t +¥Y —d

for the appropriate d, and this can be exchanged for

G-t +¥§ - D121+ ¥ >0.

The Wholeness of Hackenbush Hotchpotch

Our last proof of the chapter shows that all ordinary Hackenbush Hotchpotch positions have
integer atomic weights. For otherwise let

g:{a,b,c,...|dw‘37f.‘---}

be a smallest counter-example in which a, obtained by chopping edge «, is the Left option
of largest atomic weight A, and d, obtained by chopping edge d, is the Right option of least
atomic weight D,

Now chop both edges a and 4 to obtain the position h, of atomic weight H. Then since
either h = a or h is a Right option of a, we must have

A—-2< H, andsimilarly H<D+2
showing that H is an integer for which
A-2 B-2,C-2,... Al H< D+2 E+2 F+2, ...

so that the atomic weight of ¢ must be an integer (though it needn’t be H).

Proper Care of the Eccentric

You don’t always need to compare g with remote stars in order to interpret the formula
G=“{A-2B-2C~-2,...|D+2,E+2F+2,..}".

In fact you can drop the quotation marks unless there are two or more integers N that fit, i.e.
satisfy
A-2B-2,C-2,... AN D+2 E+2, F+2,...

Moreover, if only positive integers fit,
“{A-2,B-2,C-2,...|D+2,E+2F+2,..}

means the maost positive one; and if only negative integers fit, the most negative one.
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The only doubtful cases are when () and at least one other integer fit, when G is

most positive, zero, or most negative,

9> 7% gl T o g<K

according as

Examples:
AL e e e
1] —1}F :i x| 4} =3 or 0

“-2]6+1}= or 0 or —1

Galvinized Games

Atomic weight theory has a surprising application to the following peculiar kind of sum. Let
Left and Right play the galvinized sum

fl+lz+l3+"'+f‘l+T‘2+7‘3+"'

just like an ordinary sum except that the winner is declared to be Left or Right according
as the last game to end is an I; or an r; (so you win by finishing off your opponent’s games
quickly). A game

—{a,be,... | d,e, f,...}

appearing in a galvinized sum has an electric charge G, defined by
G=“{A-2,B-2C-2,...|D+2,E+2F+2,..}.

except that now when more than one integer fits we take the

most positive if g is one of the I;  (positively charged)
and the
most negative if g is one of the r;  (negatively charged)

(Of course, A, B,C,...,D E F,...are the charges of a,b,c,...,d,e, f,....) If you remember
the race to pick your opponent’s ﬂowers in Hackenbush Hotchpotch vou'll see that the ordinary
sum of

Lyt 4Lyt +Lst 4+ Ri-t +Ro-t +Ry-t +- -+ B
behaves just like the galvinized sum
E]+12+E;4+"'+T'1+T'2+T’3+"'
which is therefore a win for

Left Right or the first player
according as X = Li+La+Lz+---+R1+Ro+ Ry+- - - satisfies
X>1 X<-1 or -1 X a9l
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Because our electric charges are closely related to atomic weights, this simple version of the
theory only applies when the games are such that a player always has a legal move in each of
his opponent’s games which has not yet ended. However it does apply to all impartial games
and provides a simple proof of Fred Galvin’s nice theorem that when [; and r; are the same
impartial game, then their galvinized sum is a first player win.

Trading Triangles

Trading Triangles is a simple example. Each player has a number of heaps and may reduce
the size of a heap belonging to either player by any one of the triangular numbers
1, 3, 6, 10, 15, 21,

Using T;, for the electric charge of a Left-owned heap of size n, we find, for instance,

Ty 0

I3 “f0-2]04+2}) =1

1 “{1-2]1+2}) =2

T3 “02-2,0-2|2+2,0+2}" =1
Ty “1-2,1-2 | 142,142} =2
T; “2-2,2-2| 242,242} =3

Ts  “{3-2,1-2,0-2 | 3+2,142,0+2}" = 11

Ty 0

T, T; 1 2

T3 to T5 1 2 3

T to Th 13 2 3 2
Tho to Tha 1 23 23
T15 to Tao 13 2 3 2 3 2
T21 to Tz]r 1 2 3 2 2 3 2
ng to )1—135 1 2 3 23 3 2 3
:r;;(-; to ... 1% 2 2

Is there a simple rule? The most famous entry in Gauss’s diary is that for 1796 July 10 which
reads

ETPHKA! num = A+ A+ A

which we know to mean that it was on that day that the Prince of Mathematicians finally
established that every whole number can be represented as the sum of at most three triangular
numbers. Every triangular number we have calculated so far has charge 0 or 1 (this happens
for 0,1,3,10,21,28,...) or 1% (which happens for 6,15,36,...). Let’s call these two classes of
triangle

acute (charge 0 or 1), and
obtuse (charge 13).
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Then we can prove that until a charge 4 first appears, the charge of a non-triangular number
is the least number of triangles, not all obtuse, that are needed to represent it, and moreover
that a triangular number is obtuse if and only if there is a move from it to some heap of charge
3. Although we haven't yet seen a charge of 4, because most triangular numbers are obtuse it
seems likely that eventually one will appear and sometime thereafter we might expect other
new charges such as 2=, 2%, ete. We can’t even be sure that the charges don’t tend to infinity!

You can play a similar game, Squandering Squares, in which the heap must be re-
duced by perfect square amounts. In this case a greater variety of charges shows itself almost
immediately.

So 0
Slt.OS;; 1 2 3

Sy to Ss 1323 43
SgtOSlE, 1%2 343 34
Slﬁt.0524 2« 2 3 3 3 3 444
S4g}t.05(-;;; 3|22 34 3 3 44 4 3344414
Se4 to Sso 3222 3 4 3 3 4 44313344444
Ss1 to Sgg 2¢22 3 4 3 3 4543344445433
S100 to Si20 3225 3 433324 4 433 4543443444
Si21 t0 Shaz 3225 3 4 3 3 444 33444444344445
Siuato... 323+« 3 4313 3 44 3 3 4




Extras

Multiples of Positive Games

The atomic weight theory is concerned with approximating games by multiples of the basic
unit, 7. In fact we can define multiples G - U taking any positive game U as the unit. For
integer multiples we can of course use the obvious definitions, for example

2.U=U+U, (-4)-U=-U-U-U-U and 0-U=0

For non-integer multipliers, Simon Norton’s ingenious definition makes essential use of the
incentives

I=UL-UorU-U~R

of U. Recall from Chapter 6 that incentives are always <1 0. Norton’s definition is
G-U={Gl- U+ (U+L),GL U+ (U+L),...|G? U~ (U+L),G?-U - (U+L),...}

where I, I, ... are the distinct incentives.
Fortunately most choices for U have a unique largest incentive I and then we can simplify

Norton’s formula:
G-U={G"-U+{U+I)|GF-U - (U+I)}

For example, for

U=1=0]%
the incentives are
0—1=] and T —% =T«

so that I =7* is the dominant incentive, and since
U1 =1=
we recover the definition for the multiples of 1:
G-t ={G% 1 + % | GR-1 + Ux}

Remember, you must only use Norton's definition for non-integer G.

Multiples Work!

There are quite a lot of things about multiples to be proved:

Independence of form: fA=B thenAd-U=8B-U
Monotonicity: A=zBifandonlyif A-U >B-U
Distributivity: (A+B) - U=A-U+B-U

255
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Fortunately these follow easily from the trivial observation that
(-G@) - U=-G-U
and the remark that you can play the games
A+B+C+--- and A-U4+B-U+C-U+---

in roughly the same way, except that a sum U+ changes hands with each move.
So, if, with the move, you can win the left-hand sum, then, again with the mowve, you can
win the right hand sum when U+ I has been subtracted:

A+B+C+--- >0 implies A-U+B-U+C-U+---—(U+I)1>0

The WITH Rule
Without the move you can win the right-hand sum whenever you can win the left-hand one

A+B+C+--- =0 implies A-U+B-U+C -U+--- =0

The WITHOUT Rule

Since multiplications by integers obviously work, it’s best to concentrate on the non-integers
among A, B, C, ... . When we've made a move in any of the non-integers we’ll regard the
problem as simpler even when some of the integer multipliers have increased. We suppose, of
course, that all simpler cases have heen established.

First for the ‘““With’ Rule

If all of A, B, C, ... are integers, the condition A+ B+C+--- |= 0 tells us that their sum is
at least 1, and so

A-U+B-U4+C-U+---2U

and this is 1> U+ since incentives are always < 0.
If one of them is a non-integer, then one of the good moves from A+B+C+--- is from a
non-integer component, A, say, and we have

ALy B+ CH+ - >0
Since this is a simpler case we already know that

AL U+B.U+C-U+--->0

by the WITHOUT Rule, and this provides us with the desired good move from
A-U+B-U+C-U+---—(U+I)

to
AL U+ U+ +B-U+C-U+---— (U+I) = 0.
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Now for the “Without™ Rule:

Given that Right has no good move from
A+B+C+---
we must show that he has no good move from
A-U4+B-U+C-U+---.
If he moves from a term A - U for which A is a non-integer, he gets to
AR U—-(U+D+B-U+C-U+---
which is = 0 by the WITH Rule, since we know that
AR+ B4+ CH+-- 10

If A was an integer, then A - U has the form

v+U+t+-- oo -U-U-U~---
according as A4 > 0 or A < 0, and Right’s move replaces this by

UR+U+U+- o -Uk-U-U---

which we can rewrite as

(UR—U) +A-U or (U—UL) +A4-U
Left is therefore faced with

A-U+B-U+C-U+-- -~ =(A+1)-U+B-U+C -U+---—(U+I)
for some incentive I. But since
A+B+C+--->0 implies (A+1)+B+C+--->0

we have
(A+1)-U+B-U+C-U+---=(U+I)1=0

by a case of the WITH Rule that we've already proved, despite the fact that the integer A has
been replaced by A+1.

When we deduce the WITH Rule from the WITHOUT Rule we always strictly simplify
at least one of the non-integer multipliers. When we deduce the WITHOUT Rule from the
WITH Rule, we don’t make the non-integer multipliers any more complicated and it doesn’t
matter what happens to the integer ones.
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Shifting Multiples Of Up By Stars

Recall from Chapter 6 that every non-zero game (G has some incentive G*—G or G—G# which
is at least —1, and if G i3 a non-integer both players have such incentives. We'll use this to
show that the formula

G- ={G" 1+ 1 | GR1 + Ux}

for non-integer G can be translated by any nimber, i.e.

G-+ N={GEt 4+ +*N

GR-1 + U=+ N}

THE STAR-SHIFTING PRINCIPLE
For in the difference

{GE1 + %+ 4N | GB4 + s+ +N} - G-t ++ N

the only moves without exact counters are those from *N. If Right makes such a move, Left
can respond with a move to a position

GL4 4 x4+ 4N =Gt ++N' = (GE-G)-1 + i+ + *N + N’

which is positive if G —~G > —1.
For non-ineger G, the Star-Shifting Principle gives us the formula

(G-t + T+ ¥K) = {(GL-T + )+ e+ B | (GR-t + )+ e+ ﬁ)}

which we used earlier in the chapter.
If G is an integer you can read off the simplest form of G-1+* N from Table 3 of Chapter
3. In particular

T4 =0 Y, M+ I =0t 4R 3+ TX = {0 |4 + %X},

A Theorem on Incentives

In an all small game g,
other than 0, %, 2, ...,
at least one player has
at least one incentive with
at least one for its
atomic weight.

THE AT-LEAST-ONE THEOREM

For let g have atomic weight G. We again use the fact that, unless G = (), it has some incentive
> -1
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If
G={A-2,B-2,C-2... | D+2,E+2,F+2,...}

and, say,
(A-2)-G = -1
then g’s incentive
a— g has atomic weight > 1

If ¢ is defined as the greatest integer
< D+2, E+2, F+2, ...

then we can suppose
G+1>D+2
and the incentive
g—d has atomic weight > 1

[Similarly if G was defined to be the least integer <1 A-2,B—-2,C-2,..]
Finally, if G = 0 then both players have good moves from

g+ K

If either of these is from the component G we are finished, for if, say,
a = ﬁ then A=>1

and so the atomic weight of a— g is at least 1. Otherwise both good moves are from ﬁ, to
#m and #n say, and we have
#M < g < #n

so that g must coincide in value with both *m and =n.
We have only restricted the theorem to the all small games so that we can use the Atomic
Weight Calculus. In fact it holds for all games whose values are not of the form

x, T+ *, T+*2,

for some number x. It has a very simple consequence which doesn't even mention atomic
weight:

Every game g which isn’'t a number
has an incentive > one of the stars

#, %2, %3, ...

THE STAR-INCENTIVE THEOREM

For, any incentive of atomic weight > 1 exceeds in particular all the remote stars, and if
g = x+*m, the move to x has incentive *m.
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Seating Families of Five

After their disastrous experience in organizing the children’s party at the end of Chapter 5,
Left and Right thought it more prudent to invite the parents to their next children’s party.
Each of the families they invited consisted of 3 children, a mother and a father, and to preserve
the peace the children in each family were to be seated between their parents. Left preferred
to arrange his families in the order

Mother, child, child, child, Father,

while Right preferred the opposite order. But to preserve another kind of decorum, no two
grownups of opposite sexes were to occupy adjacent chairs.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
InL. —|0]0 o0 ﬂ—1 -1 F: o x|l x| =2]
LnR|[ 0 0 00 0 0 | % * = |% x x |x2 =2 x2
RnR —[0]0 0 |0 [1 1] =] = [* |1« t|=2| 1

Table 3. Values for Seating Families of Five.

In the analysis we used the same kind of notation as we did for Seating Couples (Chapter
2) and Seating Boys and Girls (Chapter 5). But this time (Table 3) we see Greek crosses which
suggest the following identities

—F=L(3k—1)L= L@BkL | L(3k+1)L

L(3k)R =L(3k+1)R= L(3k+2)R | =Dy

Fi =R(3k—1)R= R(3k)R | R(3k+1)R

These can be proved to persist and indeed Dy, is the Dawson’s Kayles value you met in Chapter
4, so that LnR is Triplicate Dawson's Kayles. We can also show that

Dy < F, =Dy
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
F 0 1 * To Tt Tt toe * Tz Tt TizTo Toa Tia Ti2T2 Tosa
Frar oz Tis Tiz T2a T3 T3 Tozs Tiz Tia Toz * T2 Ti2 T =110 Toy Ti2as
Friaa TiosTosar* Tos TisTizs Toza* Tae Tis Tz Tos Toa Tz Tz T2 Toiaa
Fiis1 TosaTors Tizs Tiza Taa*  Tozs Tios Tias Tosa * Tosze Ti2s Tizs To To4 T123s

Table 4. Stars, Superstars and Other Fancy Forms Found in Seating Families of Five.

Our extended table for Fj, (Table 4) shows that most of them have the form
{*a, *b, ®c, ... | kv, (3, 7, . }

The value of this game is

Tm’iw,,. #M = *[L iabc"'
according as m > m=p m < p
where m = mex (a,b,c,...), p = mex(a, 3,7,...)

The game [*** is the negative of T44... . The game T4p4. . is the typical superstar; it has
atomic weight 1 and simplest form

Tabe...= {0,%, ..., x(m—1) | xa, kb, xc, ...}, where m = mex (a,b,c,...)

but the value does not change if Left is given arbitrarily many extra nimber options.
We have
Ta.bc... “ *a, Ta.bc,.. ” *b-: Tubc.,. || *C, ...

and otherwise
Tabe...> *n

There is a Restricted Translation Rule:

IfA B, C,... are ain, bEn, ¢fn, ... in some order
and n is the least number with this property, then

tapc..=Tabe.. +*n

If there is just one subscript,
To=T*, Ti=1, Te=T+=%3, Ta=T+%*2, T4=T+x*5,

These properties of superstars, together with our theorems about atomic weights, dramat-
ically simplify the calculations for Seating Families of Five. We imagine that the pattern of
subscripts in Table 4 will eventually share in the general period of 102, making a complete
analysis possible.
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The symbols 17,
extra moves, namely

denote games obtained from 1,4 by giving Right some (unimportant)

from Fy Py Fys Fig Fys Fir
to T3 Toar  Tize, T12as Tias. Towzr  Ti2as, Ti2as Toas7. Toser

There’s a similar game, Seating Families of N, for any N, with the property that either
player, on seating a family, effectively reserves the two adjacent seats for his opponent. These
games are cool and have mostly infinitesimal values. In Seating Families of

2 5 8 11
the values for the positions LnR are those of the octal games
7 -07 007 -0007 ...

each repeated three times. The LnR values for familes of
3,4,6,7,9,10, 12, ...

are also nimbers, but the rule for generating them is more complicated.
These values can be shown to be nimbers using the easy little theorem that if

then
{—a,-b,—c,... | a,b,c,...} ==m

where m is the least mumber for which #m is distinct from all the games a, b, ¢, ..

There’s another series of games in which the players seat teams of n bovs or n girls,
effectively reserving adjacent seats for themselves. Seating Boys and Girls is the case n = 1.
Omar will find that the other cases provide useful exercises in thermography (Chapter 6).
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blossom, 198, 199, 240

bLue edge, 2, 198, 230, 237

bLue edges, 2

Blue Flower Ploy, 199, 201, 240, 242

Blue Jungle Ploy, 201, 210

bLue tinted nodes, 48

blue tinted nodes, 204

Blue-Red Hackenbush, 1-6, 15-17, 20, 22, 27,
2933, 35, 36, 42, 77, 179, 198, 200, 211
217, 224

Bodlaender, H.L., 225

Bodlaender, H. L., 117

bogus Nim-heap, 56

Bond, James = -007, 95

bottle, 218, 225

boundary, 158

boundary, Left, 154-156, 164, 169

boundary, left, 165

boundary, Right, 154-156, 164, 169, 170

Bouton, Charles L., 42, 52, 78

breakthrough, 188

Breuker, D. M., 144

Bridge, 15

bridge, 190, 194-196

bulls, 145, 146

Bushaw, Donald W., 52

Bynum's Game = Eatcake, 136, 234

Bynum, James, 136, 234

bypassing reversible options, 60, 6264, 66, 70,
71, 75, 77

Index

Byrom, John, 53
Byron, Henry James, 81

Caines, lan, 117

cake, 26, 51, 196, 220, 221

Calculus, Atomic Weight, 231, 232, 234, 237,
939, 242, 247, 249, 256, 259

Calistrate, Dan, 188

canonical forms for numbers, 22

card sharp, 16

cards, shuffling, 14

Carroll, Lewis, 229

cash flow, 126

Cashing Cheques, 122-124, 145, 158, 159, 240

ceiling, 51

Celoni, James R., 226

centralizing switches, 123

chain, green, 40

chain, Snort, 147, 149-151, 153, 156-158, 161,
167, 168, 177, 180-183

chair, redwood, 211

chalk-and-blackboard game, 1

chance moves, 14

Chandra, Ashok K., 224, 227

change, phase, 167, 168

charge, electric, 253, 254

Checkers, 18

Checkers = Draughts, 224, 226, 227

cheque-market exchange, 158, 159

Chess, 14, 18, 224, 226

Chess, Dawson’s, 89-92, 101, 109

Childish Hackenbush, 43, 52, 157

Childish Hackenbush Hotchpotch, 236-238

childish lollipops, 237-240

childish picture, 43

children’s party, 132, 179

chilling, 187

China, 16

Chytie, M.P., 227

class, outcome, 28, 84

cloud, 31, 36, 121, 149, 150

coalitions, 15

code digits, 92, 93, 99, 101, 103-105, 107, 108,
113, 117

Coinage, Sylver, 15

coins, 123, 124

Col, 38, 39, 47-51, 67, 68, 75, 145, 224
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colon notation, 243, 244

Colon Principle, 191, 193, 194, 220

coloring, 38, 145, 147, 187

common coset, 110

common values, 110

comparing games, 35, 36, 122

compendium, 109

complete in exponential time, 225

complete in Pspace, 224

complete information, 14

component, 20, 22, 31, 32, 35

compound game, 31

compound thermograph, 164

computing power, 163

confused, 31, 68, 69, 71

confusion interval, 121, 149-151, 158, 163

conjecture, 112

Connell, Ian G., 78

contract, 126

convention, normal play, 14

Conway, John Horton, 18, 22, 52, 78, 117, 123,
144, 188, 225, 262

Cook, Stephen A., 224, 225

cooling, 151, 152, 154, 167, 179, 231

cooling formula, 151

Corinthians 1, 13.12, 69

coset, common, 110

cost, 161

counters, heaps of, 41

Couples, Seating, 44, 45, 132, 133

cousin, 101, 103-105, 107, 109, 114, 116

Cowley, Abraham, 119

cows, 145-147

Coxeter, Harold Scott Macdonald, 78, 117

Cram, 142

Cram = Impartial Domineering, 142, 144

Cricket, 15

criminal, minimal, 194, 214

critical temperature, 167, 168, 171

Crosscram = Domineering, 119

cucle, 213

Cutcake, 25, 26, 31, 32

Chutcake, Hickerson’s, 51

cycles, 192-194, 214

Damfl, J. E., 225
Dawson’s Chess = 137, 80-92, 101, 109
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Dawson's Kayles, 261

Dawson's Kayles =
101, 109

Dawson, Thomas Rayner, 893, 117

dead animals, 135

Death Leap Principle, 127-130, 135

deleting dominated options, 62, 63, 75, 77

delphinium, 47, 199, 242

Demaine, Eric, 225

Demaine, Martin, 225

Descartes, Blanche, 96, 117

devil’s label, 195

dice, rolling, 14

Difference Rule, 74

digits, code, 92, 93, 99, 101, 103-105, 107, 108,
113, 117

dilemma, 132

Dim, 98

disarray, 95

discount, 161

disguise, 95

disincentive, 147, 148

dissection, 128, 120, 134

dissociation, thermal, 168

Dodgson, Charles Lutwidge, 1, 229

dog with leftward leanings, 4

dominated option, 62, 63, 75, 77, 126, 149

Domineering, 178, 187

Domineering = Crosscram, 119-122, 139, 142,
144, 153, 177

Domineering, Impartial = Cram, 142, 144

Dominoes, 119

Dominoes = Domineering, 119

Don’t-Break-It-Up Theorem, 213, 214, 216

Dots-and-Boxes, 15, 95, 225

Double Duplicate Nim, 114

Double Kayles, 99

double-down, |}, 68, 69, 71

double-up, f, 68, 69, 71

double-up, 1, 230

doubling of nim-values, 94

down, |, 68, 151

down, |, 63-65

down-second, 236

down-third, 236

downstar, 66, 242

drawn, 14

.07, 15, 90, 93, 95,
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Dress, Andreas, 117

Dudeney, Henry Ernest, 82, 117

Duplicate Kayles, 99

Duplicate Nim, 114, 116

duplication of nim-values, 94, 98, 99, 114, 116
Duvdevani, N., 79

Eatcake = Bynum’s Game, 136, 234

Eatcakes, 234

eccentric cases of atomic weights, 231, 232,
237, 239, 249, 251

economy, underlying, 151

edges, 40, 43, 135

edges for moves, 40

edges, bLue and Red, 2-6, 29, 30, 77, 198, 201,
230, 237

edges, grEen, 29, 30, 33, 40, 41, 190-196, 198-
202, 204-206, 210, 211, 218, 220, 221, 225,
237, 251

Ehrenborg, R., 117

electric charge, 251, 253, 254

Elkies, Noam D., 14, 18, 79

empty set, 82

endgames, Go, 187

ending condition, 14, 35, 46, 47

enlarged flow, 204

Enough Rope Principle, 16

Epp, R. J., 117

Eppstein, David, 225

equably favorable, 35

equally uppity, 242, 245

equitable, 157-161, 169-172

Erickson, Jeff, 138, 144

eternal games, 46

Even, Shimon, 224, 225

evil numbers, 110

Ex-Officers Game = -06, 101, 103

exactly periodic, 86

exceptional values, 90-92, 101, 108

Exchange Principle, 246

excitable, 157-161, 169-172

excluded values, 111

exemptions, tax, 151

explosive nodes, 49, 50

exponential time algorithms, 224

extended thermograph, 161, 162

Extras, 14, 46, 73, 101, 134, 180, 220

Index

fairy chess, 117

favorite, 262

Ferguson's Pairing Property, 86

Ferguson, Thomas S., 86, 117

field, 145

fine print, 126

finicky look, 91

first cousin, 101, 103-105, 107, 109, 114, 116

first player wins, 28-30

fit, 22, 251

Flammenkamp, Achim, 86, 112, 117

floor, 51, 75

flow, 202, 204-206, 208, 209, 222

flow method, 238

Flow Rule, 201, 202, 204, 210

flow, cash, 126

fAower, 29, 30, 33, 35, 36, 47, 66, 67,
190, 195, 199-201, 210, 230, 240,
242, 245, 246

flower garden, 190, 199, 229, 230, 240

flowerbed, 242, 244, 246

flowerbed should be posy, 33

flowerstalk = stem, 36

foot, 211, 212

Ford, Lester R., 205, 212, 225

forest, 33, 34

form, canonical, 22

form, simplest, 22

form, standard, 101, 103-105, 107-109, 114

Formula, Cooling, 151

foundations for thermographs, 155

Fox-and-Geese, 15

fractional atomic weight, 234, 236

fractional multiples, 256

Fraenkel, Aviezri S., 18, 78, 224, 226

freezing point, 154, 168-172

French Military Hunt, 15

‘ulkerson, Delbert Ray, 205, 212, 225

function, mating, 193

function, ruler, 98

function, Welter, 193

furniture, redwood, 211, 212, 213-217, 222

fusion, 192-196

fuzzy, 28, 42

fuzzy flowers, 29, 30

tuzzy games, 28-33, 35, 36, 39, 42, 239

fuzzy positions, 28, 32, 33
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Gébel, Fritz, 118

Gale, David, 117

gallimaufry, 68, 75

Galvin, Fred, 253

galvinized games, 253, 254

game in the jungle, 209

game locator, 103, 109, 113

game of pursuit, 15

game trees, 40

Game, big, 65, 75, 202, 206, 222

Game, Bynum's = Eatcake, 136

game, cold, 145

Game, comparisons of, 35

Game, compendinm, 109

Game, compound, 31

Game, coolest, 173

Game, eating, 136, 234

Game, equitable, 157-161, 169, 170, 172

Game, eternal, 46

Game, Ex-Officers, 101, 103

Game, excitable, 157-161, 169-172

Game, finite, 46, 115

Game, fuzzy, 28-33, 35, 36, 39, 42, 239

Game, galvinized, 253, 254

Game, Grundy’s, 15, 96, 112

Game, hard, 211, 217, 223

Game, hexadecimal, 116, 117

Game, hot, 125, 133, 145174,
187, 225

game, identification, 65

Game, impartial, 15, 40, 56, 82, 84, 196, 220

Game, Kenyon's, 116, 117

Game, loopy, 15

Game, map-coloring, 38, 145

Game, negative of, 33-35

(Game, Northcott’s, 55

(GGame, octal, 101, 103-105, 107-116

Game, ordinal sum, 220

176-185,

Game, partizan, 15, 65, 187

Game, short hot, 225

Game, simplifying, 60, 62, 63, 75, 77

Game, subtraction, 84, 86, 87, 98

Game, switch, 121-125

Game, take-and-break, 81, 82, 84, 86, 87,
89-96, 98, 99, 101, 103-105, 107117

Game, take-away, 82, 84, 86, 87, 98, 101

Game, tiniest, 125, 126
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Game, tracking, 65

game, tracking, 222

Game, Wythoft's, 15, 60, 74

Game, zero, 4, 9, 33, 41

game, zero, 28

Gamesman's Toolkit, 142, 144

Gangolli, Anil, 109, 112, 117

garden, 33, 199, 229, 230, 240

garden, flower, 190, 199

Gardner, Martin, 18, 52, 144

Garey, Michael R., 217, 224, 226

Gasser, Ralph, 18

Gates, Carrie, 117

Gauss, Carl Friedrich, 254

gee-up, 247

Generalized Geography, 224

Generalized Hex, 224

Generalized Kayles, 224

geraninm, 47, 199, 242

gift horse, 72, 77

Gift Horse Principle, 72, 77

giraffe, 205, 206

glass, magnifying, 151

Go, 16, 18, 161, 187, 188, 224, 226

Go-Moku, 14

Gobang, 226

godd, 195, 226

godd’s label, 195

golden number, 75

Goldschmidt, E., 226

Golomb, Solomon W., 117

GONC = Games of No Chance, 18, 79, 118,
188, 226

good move, 16, 22, 196

Good, Irving John, 226

graph, 145-147

graph, bipartite, 217, 224

graph, spanning tree of, 217, 224

graphic picture of farm life, 145, 146

grass, 40, 42, 199, 240, 242

green chain, 40

grEen edge, 230

green edges, 29, 30, 33, 41, 190-196, 198-202,
204-206, 210, 211, 218, 220, 221, 225, 237,
251

green girl, 192, 193

green Hackenbush, 39-42, 190-196, 225
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green jungle, 198, 199, 201, 220, 221

green shrub, 193

green snake, 40

green string, 243, 244

green tinted nodes, 204

green tracks, 202, 204

green trees, 191-193

greenwood tree, 34

greenwood trees, 34

grounded cycles, 196

grounding cycles, 193

grown-up picture, 43

Grundy scale, 87, 90, 91, 94, 96, 101

Grundy Skayles, 91

Grundy’s Game, 15, 96, 112

Grundy, Patrick Michael, 42, 56, 79, 117, 220,
221

Guiles = -15, 94, 101, 103

Guy, Michael John Thirian, 112

Guy, Richard Kenneth, 18, 89, 99, 109, 117,
118, 144

Hackenbush, 1-6, 14, 19, 20, 28, 42, 43, 75,
190-196, 198-202, 204-206, 208218, 220
292224, 225, 240

Hackenbush Hotchpotch, 29, 30, 38, 47, 66-68,
198202, 204206, 208211, 225, 230, 238,
251

Hackenbush is hard, 211, 217

Hackenbush number system, 78

Hackenbush picture, 1, 2

Hackenbush string, 22, 24, 77, 78, 194, 195

Hackenbush, Blue-Red, 1, 2, 4-6, 15, 17, 20,
22, 27, 29-33, 35, 36, 42, 77, 198, 200,
211-217, 224

Hackenbush, Childish, 43, 52, 157, 237

Hackenbush, Green, 39-42, 190-196, 225

half-move, 4, 7, 9, 19, 20

halving nim-values, 195

Hanner, Olof, 188

hard game, 211, 217, 222, 223

hard problems, 223-225

hard redwood bed, 217, 222

hard-headed, 171

hardness, 211, 217, 223-225

Hawaii, 16

Hagzlitt, William, 1

head, animal’s, 205

Index

head, girl’s, 193, 196

head, losing your, 222

head, severed, 205, 220-222

head, shrunken, 220, 221

heat, 125, 132, 145

heating, 167, 173

heirarchy, 96

heptominoes, 139

van den Herik, H. J., 144

heuristic discussion, 158, 159

Hex, 226

hexadecimal games, 116, 117

hexominoes, 139

Hickerson, Dean, 51

higher ground, 209

Hillman, A. P., 79

Hockey, 15

Hoey, Dan, 112

Hoggatt, Vern E., 79

Holladay, John C., 118

hollyhocks, 36

Honest Joe, 158, 159

Horadam, A. F., 79

horse, 27, 28

horse, gift, 72, 77

horse, working out a, 28

hot, 125, 133, 145, 149, 151, 171, 173, 225

hot battle, 145

hot game, 125, 133, 145, 171, 173, 225

hot position, 149

Hotchpotch, Childish Hackenbush, 236-238

Hotchpotch, Hackenbush, 38, 47, 66-68, 198
202, 204-206, 208211, 225, 230, 238, 251

Hotstrat, 188

house, 43

house and garden, 33

imminent jump, 9-11

impartial, 15, 40, 56, 82, 84, 196, 220
impartial Domineering = Cram, 142, 144
impartial Maundy Cake, 196

incentive, 147, 148, 256-259
incomparable, 35

induction, 115, 234

infinite delphinium, 47

infinite geranium, 47

infinite play = draw, 14
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infinite repetition, 14

infinitesimal, 36, 169, 170, 173, 229
infinitesimally close, 151, 152, 154
infinitesimally shifted, 177179, 198
infinitesimally small, 158

infinitesimals, 171

Inglis, Nick, 51

integral, 167-174, 176-179

interval, confusion, 121, 149-151, 158, 163
invoices and cheques, 126

irregular values, 90-92, 101, 108, 187

ish = Infinitesimally SHifted, 177-179, 198
Iverson, K. E., 51

Japan, 16

Johnson, David S., 217, 224, 226
jumpee, 11

jumper, 9

jungle warfare tactics, 210
jungle, clearing, 222

jungle, green, 198, 201, 220, 221
jungle, parted, 201, 202, 209
jungle, sliding, 199

jungle, sliding , 220, 221

jungle, smart game in, 209
jungle, tracking, 204

jungle, unparted, 210

Kano, M., 118

Kao Kuo-Yuen, 188

Karp, Richard M., 217, 224, 226

Kayles, 224

Kayles = .77, 15

Kayles = -77, 81, 82, 89, 91-93, 95, 99,
110-112

Kayles, Dawson's, 261

Kayles, Dawson’s = .07, 15

Kayles, Dawson’s = -07, 90, 93, 95, 101, 109

Kayles, Double, 99

Kayles, Duplicate, 99

Kayles, Quadruple, 99

Kayles, Triplicate Dawson’s, 261

Kenyon's Game, 116, 117

Kenyon, John Charles, 109, 115, 118

Kim, Yonghoan, 18, 144

King, Kimberly, 222

kite strategy, 243, 244, 246
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Knight, White, 56-59
Knuth, Donald Ervin, 18, 51
ko, 16

Konane, 16

Korea, 16

kos, 188

Koubek, V., 227

Kriegspiel, 15

Lacrosse, 15

Lake, Robert, 18

Landman, Harold A., 18
Lasker’s Nim, 99, 113, 114
Lasker, Edward, 99, 118

last mowve, 171

last player winning, 2, 9, 12, 14
latent heat, 132

latent phase change, 168

Left, 2

Left boundary, 154-156, 164, 165, 169, 170
Left excitable, 158, 159

Left stop, 149, 150, 152, 161
Lefty, 25, 51, 234

leg, 211-213, 215, 222

Lemma, Norton’s, 220, 243, 244
Lenstra, Hendrik W., 117
Lichtenstein, D., 224, 226

Life, 15, 53

lightning bolts, 50

line, real number, 24

lollipops, 237, 238, 240

long periods, 109

loops, 40

loopy game, 15

loopy position, 188

loopy positions, 16

Loyd, Sam, 82, 118

lucky star, 246, 249

Ludo, 14, 15

Miiller, Martin, 18, 188

making tracks, 204

management of cash flow, 126
many-way Maundy Cake, 220, 221
map, 38, 145

Markert, D., 225

markup, 161

mast, 152, 154, 163
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mast value = mean value, 165, 166

mattress, 215

Mauhin, Patrick, 27

Mauldon, James G., 79

Maundy Cake, 26, 27, 51, 196, 220, 221

maximal flow, 202, 204-206, 209

mean value, 149, 151-154, 165-168,
174, 188

mex = Minimal EXcluded, 56

mex = Minimmum EXcludant, 56, 82

Mex Rule, 56

Milnor, John, 188

Milton, John, 19, 145

minimal criminal, 194, 214

172,

minimal spanning tree, 217, 224

miny, 126-129

miny-x, 126

miny-a-quarter, 135

misére play, 15, 86

Moews, David, 52, 188, 224

money, 171

Monopoly, 15

Morra, Three-Finger, 15

Morris, Lockwood, 225

mountain, purple, 198, 199

moves, 14, 40

moves, alternating, 46, 47

moves, bad, 16

moves, chance, 14

moves, equitable and excitable, 161

moves, five-eighths of a, 20

moves, good, 16, 196

moves, half, 4, 19, 20

moves, hotter, 173

moves, quarter, 6, 20

moves, reversible, 55, 56, 60, 62-64, 66, T0, 71,
75, T7, 126, 212, 213

moves, temperature-selected, 132

moves, three-quarters, 17

moves, worthwhile, 213-216

m-plicate, 98

multiples of positive games, 256

multiples of up, 71, 242, 247, 256, 258

multiples, fractional & non-integer, 236

multiples, fractional and non-integer, 256

Munro, lan, 226

musical series, 96, 117

Index

negative, 28

negative charge, 254

negative numbers, 19, 147, 148

negative of a game, 33-35

negative position, 28

negative positions, 29, 30, 68

Neyman, A., 117

Nim, 15, 40, 42, 53, 55, 56, 114, 173, 191, 240

Nim in hot games, 173

Nim, Double Duplicate, 114

Nim, Duplicate, 114, 116

Nim, Lasker’s, 99, 113, 114

Nim, Poker, 55

Nim, Poker-, 53

Nim, Triplicate, 114, 116

nim-addition, 58, 59, 73, 74, 90, 109, 110, 116,
191-196, 199, 246

Nim-Addition Rule, 60

Nim-Addtion Rule, 59

Nim-heaps, 41, 42, 56-59, 82

Nim-heaps, bogus, 56, 57

Nim-position, 41

nim-sequence, 82, 84, 86, 87, 94, 98, 99, 101,
103-105, 107-109, 113, 114, 116

nim-sum, 59, 73, 74, 82, 90, 91, 109-112

nim-values, 82, 84, 86, 87, 90-96, 98, 99, 110-
117, 191-196

nim-values, doubling, 94

nim-values, duplication, 94, 98, 99, 114, 116

nim-values, halving, 195

nim-values, periodic, 84, 86, 91, 92, 94, 98, 99,
101, 103-105, 107-110, 112-117

nim-values, reflected, 109

nim-values, replication, 98

nimber, 231, 258

nimber arithmetic, 42

nimbers, 40-42, 56, 57, 65, T4, 84, 110, 119,
199, 200, 262

nimbers, adding, 42, 58

node, tinted, 48

nodes, Col, 47-51

nodes, explosive, 49, 50

nodes, game positions, 40

nodes, Hackenbush, 191-194,
204, 222

nodes, Snort, 147, 180

nodes, tinted, 204, 206, 208-210, 222

201, 202,
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nodes, untinted, 204, 209, 210

non-number, 147, 148, 159, 160

normal play, 12, 14

Northcott’s Game, 55

Norton's Lemma, 220, 243, 244

Norton’s product, 247, 256

Norton, Simon, 145, 168, 188, 247, 256

Norton, Simon P., 220, 243, 244

Noughts-and-Crosses = Tic-Tac-Toe, 14

Nowakowski, Richard Joseph, 18, 117, 118, 144,
188, 225, 226

NP-complete, 217, 224, 226

NP-hard, 224, 225

N -positions, 84

Number Avoidance Theorem, 147149, 183

number system, Hackenbush, 78

number tree and line, 24

numbers, 22, 119

numbers, canonical form, 22

numbers, evil, 110

numbers, negative, 19

numbers, odious, 110

numbers, overheated, 176

numbers, simplest, 19, 21, 22

numbers, Surreal, 18

numbers, thermographic thicket of, 176

numbers, triangular, 254

numbers, whole, 19

O’Beirne, Thomas H., 79, 118

obtuse triangles, 254

octal games, 101, 103-105, 107-116, 262

odious numbers, 110

Officers = -6, 95

Omar, 42, 72, 109, 138, 188, 262

ONAG = On Numbers and Games, 18, 22, 48,
52, 78, 117, 139, 144, 188, 193, 225, 234,
236, 262

One-upmanship Rule, 242

opposite sex, 179

option, 14, 154, 155

option, dominated, 62, 63, 75, 77, 149

option, Left, 31, 32

option, reversible, 60, 62-64, 70, 71, 75, 77

option, Right, 31, 32

optional extras, 84

options, worthwhile, 213-215
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ordinal addition, 220
ordinal sum, 220
ordinary sum, 220, 221
outcome, 28, 35

outcome classes, 28, 84
outcome of sum, 31, 32
overheating, 174, 176, 187
overheating operator, 188
Ozery, M., 79

Pairing Property, Ferguson's, 86

parcels, 187

paricles, 167

parity, 73, 234

Parity Principle, 191, 194

parted jungle, 201, 202, 209

particle, 168-170

partizan, 15, 65, 187

paths = tracks, 193, 202, 204, 222

Patience = Solitaire, 15

Paul, Wolfgang .J., 226

pawns, 89

PEEK, 224

Peg Solitaire, 15

pencil-and-paper game, 1

periodicity, 90-94, 99, 101, 109,
117, 236

periodicity, arithmetic, 99, 113-117, 144, 187

periodicity, Blockbusting, 187

periodicity, Dawson’s Chess, 90, 91

periodicity, Domineering, 144, 187

periodicity, Guiles, 94

periodicity, Kayles, 91, 92

periodicity, non-arithmetic, 115

periodicity, octal games, 101, 103-105, 107-
109, 113-115

periodicity, subtraction games, 84, 86

periodicity, ultimate, 99, 101, 112

perpetual check = draw, 14

petal, 33, 47, 66, 67, 199, 201, 240, 245

petals, 29, 30

phase change, 167, 168

phase change, latent, 168

picture, 1, 2, 192

picture of farm life, 145, 146

picture, childish, 43

picture, grown-up, 43

113-115,
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piebald node, 47, 48

piebald spot, 145-147

Pink, Norbert, 117

Plambeck, Thane, 109, 112, 117

play, infinite, 14

play, misere, 15

play, normal, 12, 14

player, first, 28-30

player, second, 28-30

playing the averages, 167, 173

Ploy, Blue Flower, 199, 201, 240, 242

Ploy, Blue Jungle, 201, 210

Ploy, Red Jungle, 210

Poker, 15

Poker-Nim, 53

Policy, Temperature, 124, 125, 131, 132

polyominoes, 139, 142

poroof, 213

‘P-positions, 84

position, 14

position, A, 84

position, P-, 84

position, active, 149, 150

position, Domineering, 120, 121, 139, 142, 144,
153, 177

position, fuzzy, 28, 32, 33

position, hot, 149

position, loopy, 16, 188

position, negative, 28-30, 68

position, positive, 28, 68

position, starting, 14

position, terminal, 2, 7, 28
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